

Final Report - PolyDrop

Dr. Ben Hawkins

Zach Scott and Lilly Paul
ztscott@calpoly.edu, ljpaul@calpoly.edu

mailto:ztscott@calpoly.edu

Table of Contents
Executive Summary 3

Introduction 3
Project Overview 3
Client and Community Partners 3
Project Outcomes and Deliverables 4

Background 6
The Applications and Uses 6
Lab-On-A-Chip Initiative 6
How OpenDrop Digital Microfluidics Works 7
History of OpenDrop 7
Building Our OpenDrop 8

Engineering Specifications 9
The Personas 9
Brief Descriptions for Personas 10
Use Cases 11
Detailed Description of Use Cases 11
Engineering Specifications 13

Final Design 14
Functional Decomposition 14
Image Analysis Design 19

Design Verification 20
Failure Mode Effects Analysis (FMEA) 20
Design Verification Plan 21
Verification Test Results 23
Firmware Tests: 28
System Analysis 29

References 31

Appendix 32
Appendix A 32
Appendix B 34
Appendix C 34
Appendix D 36
Appendix E 38
Appendix F 47

Executive Summary
This report contains explanations and details of the background, engineering design and
qualifications, and the final results of the PolyDrop system project. In nearly 20 weeks, the team
developed benchmarks and specifications to make a software interface that would control
existing hardware to move droplets in a customizable fashion across a platform. After
developing the software product to set specifications, it was tested against specific benchmarks.
Results show that the PolyDrop system meets all requirements, is a reliable system, and enables
researchers and students to study the field of microfluidics more effectively.

Introduction

Project Overview
Our goal is to create a product that will utilizes the OpenDrop system and allows the user to
move a droplet across the grid of multiple spaces with one control. Already, the OpenDrop
product is built using electro-wetting technology that moves droplets across the grid in an atomic
fashion. The hardware is portable and allow’s users to conduct point of care testing with desired
liquids. The system utilizes manual buttons to control the droplet across the grid, forcing the user
to control the path of the liquid. In addition, a software interface to OpenDrop, MicroDrop
provides a “point and click” control using a computer and mouse. In addition, MicroDrop relays
live visual feedback to the user, and both functions greatly improve the user experience. Our
goal is taking this to the next step, allowing the user to preprogram a path for a droplet(s) on
OpenDrop’s hardware and provide image analysis feedback from a webcam. Our ultimate
deliverables is a product that allows users to design paths for the droplet movement, then
physically moving the droplet across the grid in that desired path. As well as detecting the drops
with the webcam and providing information like color and location on the grid to the user. This
functionality will greatly improve the user experience and provide many benefits to the existing
system.

Client and Community Partners
For our product, there are three main established community partners. First, DropBot, an
open-source Digital Microfluidic automation system. The digital microfluidic system originates
from DropBot, which has an established community supporting those who wish to improve it.
DropBot was published in 2013 and the community has been growing since. The DropBot is a
larger system that is not lightweight, however it offers more user control and real-time

measurement of instantaneous drop velocity. The second partner is OpenDrop, the smaller and
lightweight version of DropBot. OpenDrop Version 1 was published in 2015, with version 2.0
developed in 2016. OpenDrop is an open-sourced product and is developing a community for
support. OpenDrop will serve as the base for our project, and we will be working closely with
their open source libraries. We obtained a working OpenDrop system from Gaudi labs in order to
avoid having to build one ourselves. The third partner is MicroDrop, the software that layers
OpenDrop to create point and click control. Microdrop is open-source as well and they provide
their source code online. We have come to the realization that working on top of the Microdrop
software is not a possibility so we are basing our UI off of MicroDrop’s. Overall, our product
consists of these three main community partners and one direct beneficiary being Dr. Hawkins.

Project Goals and Objectives
The original goal of the Capstone project was to create an interface that controlled the Open
Drop hardware and allowed users to move multiple drops on multiple paths with just a few
clicks. This was accomplished with the AutoDrop software. The project was extended into our
senior project because there was still a lot of work to be done polishing the interface and adding
new features. On the GUI side, the software did not account for drop collisions, had a storage
problem because the arduino could only handle a set number of byte arrays at a time, and took
too many button presses to actually create and execute a path. The goal of Zach’s work in the
project was to fix these problems and make sure the GUI ran smoothly with the addition of the
new features Dr Hawkins wanted us to add. The goal of Lilly’s work was to add image analysis
in order to provide feedback of the drops. The image analysis needed to be able detect drops on
the grid, as well as provide information like their location on the grid and color. Zach and Lilly
then worked together to integrate the image analysis into the existing GUI.

Project Outcomes and Deliverables
At the end of the Winter Quarter 2016, the Auto Drop software was complete as a capstone
project and featured multi-drop control, multi-path options, serial communication with the Open
Drop arduino, arduino storage of all the paths before execution, and the ability to delete paths.
What it lacked was a good collision detection system and the ability for one drop to absorb
another when a collision occurred. It also had a storage space issue on the arduino side of the
project, limiting it to set number of communications per cycle, meaning that there was a limit on
how many drops could be stored and how many paths could be run at once. With the addition of
the video analysis features, we decided to change the path execution from whole path
communication to one square at a time movement. This allowed us to run the image analysis and
drop detection after every square of movement to determine if the position and color had
changed and highlight them on the screen. What we didn’t foresee is that this change cause the
program to run incredibly slow. We had to wait a whole 4 and a half seconds between each

movement. On long paths the program took too long, making our software frustrating for the
user. In order to fix this, we entirely revamped the arduino code that was written in capstone to
run the paths when they were received instead of storing them to execute later. This change sped
up the program greatly, making it so the biggest delay was the image analysis, which was the
ideal speed for maximum usability. It also solved the memory issues we had encountered during
the testing of the capstone project. In testing our new software, renamed Poly Drop, we did not
reach any limit in amount of paths that could be run at once. The image analysis portion of the
project also was completed to the desired specifications. The analysis runs after every square
movement and data about drop locations and colors is returned to the user.

Background

The Applications and Uses
This project focuses on the bioassay analysis concentration of microfluidics. Most cell assay
studies focus on cell differentiation and cell response to foreign substance. Currently, this
research is done by studying the response of multiple cells (colonies). This method has been
challenged for its accuracy, because it relies on a mean of responses. However, using single
samples through microfluidics can provide similar results and eliminates the need for research on
an entire cell population. Instead, if one cell can be studied through electrowetting technology,
cell assay analysis can become much more precise.

Lab-On-A-Chip Initiative
Digital microfluidics (DMF) is a specific and sub category of microfluidics. DMF has been
researched extensively by Aaron Wheeler of the Wheeler Microfluidics Laboratory, who has
been one of the pioneers of the “lab-on-a-chip” initiative. DMF mainly involves an electrode
array which provides different potentials to specified cells on the array. In effect, the voltage
potential changes the shape of a certain liquid droplet and moves in the direction of the force
applied by an adjacent potential. A general depiction of this process is below.

Figure 1: Illustration of digital microfluidics (Wheeler microfluidics Laboratory)

How OpenDrop Digital Microfluidics Works
Open Drop uses digital microfluidics to store, move, transfer, combine and split droplets. It
provides this functionality by utilizing high voltage and electronic circuitry. By using a change
in high voltage across the grid, droplets can move from node to node. This technique is utilized
by separating the hardware into different layers of the circuit.

The different layers include the electrode grid, a hydrophobic surface carrier, the drops
themselves and a conductive with grounded side of glass. These layers and their function are
explained below.

The first layer is the electrode grid. The grid outputs 190-330 volts onto specific grid nodes
which is controlled by the Arduino firmware. If an grid node is off, the node rests at 0 volts.
The grid is 16 x 8 nodes, allowing the board to have multiple drops move in different paths. This
layer is the beginning the circuit.

The next layer is a hydrophobic surface carrier, placed on top of the electrode grid. This layer
serves two purposes. First, to separate the liquid from the high voltage electrode grid which
prevents damaging the circuitry. Second, by providing the liquid a surface that has very low
friction to easily move the drops. This layer is essential to allow liquid to translate across the
grid.

The third layer is the liquid under testing. The simplest liquid to test with is water.

The fourth layer is a glass sheet with the conductive side facing the electrode grid. The ground
side of glass faces the outside or user. This final layer completes the circuit.

By preparing the OpenDrop hardware with these layers, the drops are able to move when the
electrode grid changes voltage from node to node. The high voltage at one node forms an
electric circuit through the hydrophobic surface carrier, the droplet and the glass. When the high
voltage node turns off and the neighbor node goes high, the droplet should translate to the new
high voltage node. By using this technique and with adequate preparation, the liquid can move
anywhere on the grid.

History of OpenDrop
OpenDrop is based from the DropBot digital microfluidics platform. DropBot provided the
initial prototype and functionality and OpenDrop improved it with design and portability.
OpenDrop was developed using the lab on a chip concept, where point of care tests could be run
in essentially any environment with quick results. Thus, the primary improvement is the size of
the machine. Dropbot is a large, bulky, multi-piece machine, whereas OpenDrop can fit in one’s
hand. In addition, OpenDrop requires a lower operating voltage than DropBot. While DropBot
and OpenDrop are different, the key takeaway is to use DropBot’s active community to our
advantage. DropBot has been around longer, thus has faster and more consistent resources we
can use for OpenDrop.

Building Our OpenDrop
A first step for our team was replicating OpenDrop’s hardware to a working prototype that we
could develop on. The easiest solution was to contact Dr. Gaudenz, the founder of OpenDrop,
and ask if he would send us a prototype from his lab. The second method, involved searching
through the OpenDrop website, locating manufacturing files and finding a company that will
create the pcb and solder the board. Thankfully, Dr. Gaudenz send a prototype OpenDrop board
that we developed on.

OpenCV
We used OpenCV in the development of our image analysis. OpenCv (Open Source Computer
Vision Library) is an open source computer vision and machine learning software library. It was
build to promote and accelerate the use of machine perception in products. It cross platform and
a BSD-licensed product, making it easy for businesses or individuals to utilize and modify the
code. It is used widely in the industry by companies like Google, Microsoft, and Intel. OpenCv is
developed in C++, but had C, Python, Java and MATLAB interfaces and supports Windows,

Linux, Android and Mac OS. We developed with the Java interface. We are currently using
version 3.2.0.

Engineering Specifications

The Personas
Below are the description and details for the two main personas concerning the PolyDrop
system. An extensive list containing background and characteristics are provided for each
persona followed by a brief summary. Based from the personas, use cases were developed and
defined. A detailed description for the important cases are provided at the end of the section.

Persona 1 : “Researcher”

● Background
○ researcher
○ developing new information on bioassay analysis
○ developed in the bio field

● Behavior patterns
○ automates things
○ doesn't want/need to do step by step

● Goals
○ run a speedy test for bioassay, on-site
○ receive quick results and answers
○ quickly interpret results

● Skills
○ how to personally adjust settings on device
○ biomedical to interpret results

● Attitudes
○ time efficient
○ very interested in detailed reports

■ to understand and develop from results
○ “Give me quick, accurate and detailed results”

● Environment
○ inside a research facility
○ possible application-based/publishing based
○ time-sensitive manner
○ multiple tests for validity

Persona 2 : “Student”

● Background
○ education about device usage
○ education involving bioassay results

● Behavior Patterns
○ follows the step by step approach/information
○ no specific pattern

● Goals
○ testing for educational purpose (rather than research)
○ reproducing previous results

● Skills
○ minimal knowledge for biology (shouldn’t be designing custom test)
○ minimal knowledge on technology

● Attitudes
○ possibly impatient
○ “Let me just get through this lab”

● Environment
○ education setting
○ tests are not as critical
○ not as detailed reports
○ multiple devices in the room for groups

Brief Descriptions for Personas
1. Researcher

The researcher is an individual who wants to use this product to test their hypothesis via point of
care testing. The researcher is interested in running repeated tests and programming them in a an
automatic fashion. He/she is interesting in the data of the test, information about paths and grid
manipulation and the resulting droplets. Finally, he/she will need to change the administration
settings to fine tune the test to specific needs.

2. Student

The student is an individual who wants to learn how to use OpenDrop and operate point of care
testing. The student is interested in operating the product at a basic level, simply manipulating
drops around the grid. The student is also interested in running the OpenDrop product without
running into many problems.

Use Cases
1. The user manually controls droplets via physical buttons on the OpenDrop hardware.

2. Point-and-click manipulations of droplets using the microdrop software and a computer.

3. Users pre-programing paths for a droplet(s) using the PolyDrop user interface.

4. Pre-programming the path of a single droplet to specific grid points.

5. Specifying the merging or splitting of multiple droplets using the PolyDrop user interface.

6. The user wants to see how different colors of drops combine together

Detailed Description of Use Cases
Use Case 1: Pre-programming a path using PolyDrop user interface.

The user wants to create a point of care test with specific liquids. He approaches the product,
turns it on, boots it up and inserts his liquids onto the grid. After getting the basics set up on the
interface, it is time for the user to create paths for the droplets to move. Instead of manually
controlling the movement of the drops, (s)he wants to easily automate this process. This way the
test runs faster, doesn’t require constant attention and the test can be saved for later usage.

First, the user will select a button to control a specific drop on the grid. Then, the user will be
able to mark grids points where the drop will move across. The path from start to end can be
adjusted by the user. After creating the desired path, the user will hit complete. The user can do
the same for others droplets as well. After completing his test, by preprogramming all desired
paths with liquids, the user will click “End Path.” Finally, the drops will move according to the
paths. After the test is complete, the user can extract the droplets and remove the film atop the
grid.

Figure 2. UML Diagram from Use Case 1

Use Case 2: Point-and-Click manipulation of droplets using the PolyDrop software.

In order to use the point and click functionality, the user first powers up the OpenDrop hardware
and visually confirms that it receives an adequate amount of power. Next, the user connects
OpenDrop to a computer with the associated microdrop software installed. Next, they place a
hydrophobic surface carrier over the OpenDrop electrode grid. After, they carefully place the
liquid droplets on the electrode grid. The user leaves the hardware and refers to the microdrop
software where they verify that they liquid is visible on the UI. Next, they would input the paths
for the test they are about to run). He proceeds to begin testing by pointing and clicking on the
camera interface that microdrop provides. After testing, the final steps would be to extract the
liquid from OpenDrop for either disposal or further analysis, and then finally powering down
OpenDrop and PolyDrop.

Figure 3. UML Activity Diagram for Use Case 2

Engineering Specifications
Derived from the personas and use cases, the below engineering specifications were made and
met via thoughtful design and engineering. After assessing the use cases, the below
specifications outline what the team needed to make in order to accomplish the client’s needs.
As a team, we created seven engineering specifications near the beginning of this quarter.

1. From the interface, the user can move a droplet from selected starting node to end node.
2. The user can create multiple paths with different drops.
3. The user will be automatically provided a path by selecting a start and end node.
4. The complete system will run for 2 hours without crashing or errors.
5. The Arduino and interface will communicate through reliable serial connection.
6. The user can access a history of previous run paths.
7. The user can add drops anywhere on the electrode grid through the interface.
8. The interface can detect drops on the grid from a webcam and image analysis
9. The user has access to the color and location of each drop detected
10. The interface displays a current image of the grid and drops from the webcam

Final Design

Functional Decomposition
The functional decomposition explanation will follow the top-down approach by introducing
modules and sub-modules in various diagrams. This document utilizes functional
decompositions for the hardware and state diagrams for the software.

Level 0:

Figure 3: Level 0 Design

At the highest level, the basic inputs are power, user interaction and droplets onto the board.
From there, the PolyDrop will coordinate the user interactions and develop methods to move the
drops in a certain path. The result will be drops translating across the grid and the display
reflecting the movement.

Level 1:

Figure 4: Level 1 Design

The main modules are depicted in Figure 4 and the core module is the Arduino hardware. The
decomposition begins with power to the hardware and input from the user on the interface.
Using serial communications, the GUI will instruct the hardware what to do. Then, the hardware
will move the drops across the grid as the user specified. To validate the correct movement, the
electrode voltage will change and the display will visually depict drop movements. At the level
one, there are 4 main modules, each uniquely responsible to allow the user to move the drops.

Looking at the application as a whole, our specific project and goals are focused on developing a
software layer to create easy interaction between the user and hardware. Essentially, our time

was focused on developing an interface to communicate to the hardware. Thus, the next
diagrams are software based figures which explain the code flow and states.

Figure 5. Data Flow Diagram for Java Interface

The above diagram shows the state diagram for the GUI implementation. The program uses a
mode variable to determine what state it is in and when it should perform certain tasks. It starts
off with the mode equal to zero with no drops selected and the create path button not pressed.
The user has a choice of either selecting a drop or clicking the create path button, but both must
be done before a path is able to be created. Once a drop is selected and the user has specified that
they want to create a path, they must select an endpoint for that drop to move to by clicking one
of the grid buttons. Once the grid button is pressed, the colors on the grid will change to indicate
the new path and the history list will update. The mode will be set back to zero. The user then
has a choice of creating new paths or sending the path data to the arduino for execution. If the
send path button is pressed, the GUI will send the current path data over the serial connection
and the LED’s on the OpenDrop system will flash when the data is received and processed. The
user must then hit the End Path button to have the arduino execute the specified paths. After the
end path button is pressed, the gui goes back to its original state, but with the new updated drop
positions.

We have added a feature allowing drops to be added to the board after the execution has started.
It is not in the above state diagram, but if a user presses the Add Drop button and then clicks on a
grid square, a drop will be added to both the GUI display and OpenDrop display.

Below is the originalstate diagram for the Arduino. In the first iteration, the arduino functioned
as follows. Since the Arduino reacts to the serial communication it receives, it makes sense to
use a state diagram which labels the different states the Arduino will enter.

Figure 6. State Diagram for Arduino software

Label 6 indicates there are four main states the Arduino is in: Init, Read, Process and Execute.
The important states are the last three. In summary, the Read State will poll for data from the
serial connection. Once there is data available, the Process State will read the information and
fill a 2 dimensional array, drop by paths movement, with the data. Finally, when the execute
byte is sent, the Execute State will read from the matrix and move the drops across the grid as
specified.

With the change to execute paths automatically, we greatly cleaned up the logic of the state
diagram above and in doing so, massively sped up the execution speed of the entire program.

Image Analysis Design
In our image analysis code we start by accessing a USB webcam, take a real time image. Then
do a background subtraction with a pre-specified background image. Both images are
preprocessed to reduce noise usually from light variability. The background subtraction
produces a foreground mask. On the foreground mask we then perform an edge detection. With
the resulting contours from the edge detection, we create a bounding rectangle around the
contours. This bounding rectangle we overlay back on the original input image. Next, we
compute the center point of the rectangle to calculate where it is on the OpenDrop grid, and
store that location in column/row format. Then, we compute the mean color of the pixels in the
bounding rectangle and store this color. Lastly, we return the original image with the bounding
rectangle drawn on it (in the color detected) and display in the GUI. We also return the location
and color data for each detected drop. You can see this software flow in the Figures below.

 Design Verification

Failure Mode Effects Analysis (FMEA)

Figure 7. Failure Mode and Effects Analysis (larger image in Appendix D)

The chart above shows our Failure Mode Effects Analysis table for PolyDrop. It displays
possible malfunctions with the system along with information about the severity of failure,
likelihood of occurrence, causes, recommended action to correct the problem, and more. The
failures were split into 4 categories: Single Electrode, Serial Data, Interface crashes, and Drop
movement. There are multiple failure cases for each category. This diagram was used to
diagnose errors that occur while the system is in use. The two large process functions are
activating an electrode node and sending a serial data which are be explained below.

If the electrode grid is unable to output high voltage on a node, the drop will not move to the
desired spot. This failure can happen due to a hardware malfunction, bad material setup or a
power failure. Fortunately, solutions are available for every situation.

The second large process function prone to error is sending serial data. If the data is too long,
the Arduino is not initialized or if the physical wire is broken, the Arduino will not receive
instructions from the interface. Like above, the chart outlines the recommended action for each
situation.

Overall, there are 9 process functions that can fail and each has a recommended action. The least
dangerous process is the hardware not receiving adequate input power. If this occurs, the

hardware cannot output enough voltage in order to move the drop. The solution is to make sure
the power converter gives 12 V DC and 250 mA (min) to the Arduino. The most dangerous
process is the material setup for the initialization of the hardware. If the material is not set up
correctly, for example not enough Rain-X or space between the hydrophobic surface carrier and
grid, the drops will not move. In our experience, this happens very often and it is very difficult
to move a drop. The solution is to either add more Rain-X to the surface wrap or restart the
setup process entirely.

Design Verification Plan

Figure 8. Design Verification SpreadSheet (larger image in Appendix D)

Above is the design verification plan which details how the beta prototype was tested. We tested
the product after completing the beta prototype in order to identify mistakes and limitations. In
general, there are tests for functionality, robustness, reliability and longevity. Most testing
included functionality and determining if multiple drops could be moved with multiple paths.
Another main testing focus included testing the byte limit of the serial communication protocol.
In summary, the tests contained everything from proper initialization, reliable functionality and
stress of use. The image analysis was developed and tested separately. Then once working to our
satisfaction, we integrated it and performed system tests.

The first major test proceeds to try every combination of initialization steps, only to reveal that a
specific order is required. Since there are two different parts to the system, Arduino and
computer, it is important to discover the correct way to initialize the system. Correct
initialization assures that the interface recognizes and communicates with the hardware with a
reliable protocol.

The second test finds the maximum number of drops and spaces the Arduino can handle on the
grid. Since the Arduino is a microcontroller with limited memory space, there exists a maximum
of usable space. By finding this limit, we can develop PolyDrop such that the user is aware of
this limitation.

The third main functional test proceeds to create different and complex paths for multiple drops
on the board. This is the main functional test and incorporates the most engineering
specifications. Under this testing, we created simple and complex paths with single and multiple
drops and programmed them into the board. We used the maximum number of drops and path
length possible discovered from above tests.

Other functional tests include if a history of paths is available, if the buttons on the GUI work,
how long the system can run without error, and drop detection. The results of these tests are
explained in the next two sections.

Verification Test Results

Test Description Notes Verification

One drop path movement Created 10 paths with one
drop with varying directions
and lengths

All paths performed as
expected

Multiple drop movement Created 5 paths with 3
different drops, varying order
and length

Drops finish all of their
paths first, not in order that
user specifies. This is by
design.

Collision detection test Test collision detection
between drops going multiple
directions with different end
points

Colsion Detection now
works fully, with prompts
to the user asking whether
they want to combine
drops or not.

Delete All test Test the delete all
functionality

Delete All removes all
paths, clears the path data
and resets drop positions

Delete Last test Test the feature that deletes
the last path in the history

Delete last deletes one path
from the list and updates
the data and grid colors

Figure 9. GUI Software Test table

All of the features we implemented passed all of the tests we ran with some minor tweaking
except the collision detection tests. There was problems with some of the edge cases in the
collision detection system, but most of the collisions are detected by coloring the square of the
collision red. The problem with the beta version of our software is that it detects the collision,
but does not handle the merge by updating the drop list to show only one drop. In our user
manual, we recommend that a user should delete the last path when a merge is detected. The fix
for the collision detection and drop merging bugs will come in the continuation of our project as
Zach’s senior design project.

Test Description Notes Verification

Drop Detection - Image
Analysis

Test can accurately detect
multiple drops

Was able to recognize objects
in sized drops in different
lighting.

Drop Location - Image
Analysis

Test returns the correct row,
column for the drop location
on the electrode grid

Correctly identifies location on
the grid the drop covers.

Drop Color - Image Analysis Test can accurately detect
color of the drop with
multiple different colors

Reports back RGB colors
values, visually colors the
rectangle around the drop with
the detected color. Tested with
all major colors (red, orange,
yellow, green, blue, purple,
pink, grey, brown, black,
white, and clear drops). Clear
drops had mostly blue values.

System Integration Test the image analysis still
worked as expected when
called by the GUI. As well as
testing the processed image is
displaying properly in the
GUI.

Image analysis works as
expected. Processed image is
displayed next to the UI grid.
With the processed image
displayed the GUI is too large
for my MacBook, however it
works on Zach’s PC with a
larger screen.

Movement Feedback Terminate the path if the
image analysis does not move
the drop

We were unable to test this
properly, as the Open Drop
board is broken and cannot
move drops.

Figure . Image Analysis Software Test table

All image analysis tests passed, we were able to detect multiple drops, with different colors, and
sizes. The biggest issue we faces was variability in lighting would affect the whole drop detect.
Since we are looking a such small objects (the drops), even a small variation would throw off the
whole process. This was fixed by performing preprocessing on both the background image and
current image. The preprocessing included dulling, burring, and eroding the pixels in the masked
image.

GUI Bugs Found:

● Had a problem where the corner square would not be colored yellow when creating a
path with both x and y movement negative - Fixed

● Had a problem where white squares showing previous position would not update when a
new path was created - Fixed

● Had a problem where drop list position would not update - Fixed
● Had a problem where history list overflowed off the screen on long tests - Fixed (added a

scroll bar)
● Had a problem where first history list entry would cause the program to throw an

Exception - Fixed
● Had a problem where deleting all paths would leave more green squares than expected -

Fixed
● Had a problem where delete last path would turn all previous paths yellow when we only

wanted one - Fixed
● Had a problem where collisions would not be detected for paths ending on the same

square as another dropped - Fixed
● Had a problem where not all of the old paths would turn turquoise after a new path was

created - Fixed
● Had a problem where drops would stay in the drop list after they should have merged

Fixed
● Had a problem where a collision square would stay red after a delete last path function

was completed - Fixed
● Had a problem where the wrong end byte was used on the add drop serial protocol -

Fixed
● Had a problem where drops became part of the background mask when not moving for a

long time - Fixed
● Had a problem where with slight change in lighting the whole detection would be thrown

off - Fixed
● Had a problem where had to take a background image every time starting the program,

instead of having the option to use a pre taken background image - Fixed
● Had a problem where all color were reported as grey - Fixed
● Had a problem where using a sleep in the main to allow time for the arduino to move

drops was making it so the GUI was never updated with the new process image because
the whole cpu was going to sleep - Fixed

● Had a problem where the delay was way too long before next square of movement -
Fixed

Path Formations:

Low Complexity:
The basic path formations we used to test our software were single, double, and triple paths. A
few examples of these can be seen below. These formations were tested in multiple scenarios,
such as one drop running one path, one drop running multiple paths, multiple drops running one
path, and multiple drops running multiple paths.

 single

 double

triple

Medium Complexity:
The formations below are the medium complexity path formations we used to test our system.
With varying length and direction, these paths challenged the different use cases of path creation
that exist in our code.

High Complexity:

The formations below show some of the more complex, multi drop tests that we ran to test our
system. By running long paths with multiple changes in direction, we can really test the limits of
our software. All the paths executed correctly except the collision one, which was explained
above.

Original Capstone Firmware Tests:

In addition to testing the arduino firmware code by sending the paths tested on the gui and
viewing the results, we also tested the limits of the microcontroller by sending it varying sizes of
hard-coded byte arrays. The data from this tests can be seen in the figure below.

Figure 10. Limits of Arduino memory

As the graph above shows, the arduino crashed when we tried to send it more than 55 bytes. This
is due to the Arduino Micro’s limitation on global memory space. The average usage for typical
path movements is around 30 bytes, so the limitation isn’t that bad for the system as a whole.
Every drop pattern can still be executed, but longer paths for a lot of drops must be split up into
multiple “Send Path” button presses. This issue might be fixed by using an arduino with more
memory space or using an external memory device, but it might not be cost effective for normal
use.

Current Firmware Tests:
Since the arduino does not store any paths, it never runs out of memory and there is no bytes lost.

System Analysis
After testing PolyDrop with the Design Verification Plan and recording the results, the system
meets most (if not all) requirements and passes as a reliable functional device. By design
verification, the reliability was proven and limitations were discovered. For instance, the product
meets all functional requirements to move different drops across the grid. However, a limitation
is the number of drops possible on the board and how collisions are handled on the software.
Below will go into detail on which requirements were successfully met, which were not and how
it can be improved.

The functional tests include proper initialization, moving a drop and providing a history paths.
The PolyDrop system now has a reliable method to initialize such that the Arduino is ready to
receive serial data from the interface. Second, the user is able to select a number of drops and
create unique paths for them to move. The PolyDrop system will program and manipulate the
board to the exact paths the user creates. We tested this with many different paths, starting from
simple and short to complex and long. Next, the product displays a history of run paths for the
user, which provides a better user experience. Also, it provides the user a second method to log
the paths and delete them if necessary. Next, PolyDrop allows the addition of up to five drops
anywhere on the board. As a result, the user can begin a drop path anywhere. Finally, the image
analysis was able to detect drops, their color and locations. It was also abstracted away so all the
main has to do is call one simple function, that returns the necessary information. The processed
image is nicely displayed in the GUI next to the UI grid.

Future iterations of Poly Drop can only be achieved if the system is fixed and begins to actually
move drops. At that time, we have left the tools to create extra features with the image analysis
data, such as failure detection.

Overall, PolyDrop meets all immediate requirements and is a reliable functioning system. We
feel we have maximized the software’s potential until a working hardware system is created

References
He, Jie-Long, An-Te Chen, Jyong-Huei Lee, and Shih-Kang Fan. "Digital Microfluidics for Manipulation and
Analysis of a Single Cell." IJMS International Journal of Molecular Sciences 16.9 (2015): 22319-2332. Web.

Abdelgawad, Mohamed, Michael W. L. Watson, and Aaron R. Wheeler. "Lab on a Chip." Hybrid
Microfluidics: A Digital-to-channel Interface for In-line Sample Processing and Chemical Separations (2009):
n. pag. Web

Fobel, Ryan, Christian Fobel, and Aaron R. Wheeler. "DropBot: An Open-source Digital Microfluidic Control
System with Precise Control of Electrostatic Driving Force and Instantaneous Drop Velocity Measurement."
Applied Physics Letters 102.19 (2013): 193513. Web.

Pollack, Michael G., Richard B. Fair, and Alexander D. Shenderov. "Electrowetting-based Actuation of Liquid
Droplets for Microfluidic Applications." Applied Physics Letters 77.11 (2000): 1725. Web.

Whitesides, George M. "Cool, or Simple and Cheap? Why Not Both?"Lab Chip 13.1 (2013): 11-13. Web.

"Trail: Creating a GUI With JFC/Swing." Trail: Creating a GUI With JFC/Swing (The Java™ Tutorials).
N.p., n.d. Web. 20 Mar. 2017.

"User Interface Design Basics." Usability.gov. Department of Health and Human Services, 21 May 2014. Web.
20 Mar. 2017.

Atlassian. "Git Tutorials and Training | Atlassian Git Tutorial." Atlassian. N.p., n.d. Web. 15 Dec. 2016.

"Arduino Serial Messaging Protocol." Arduino Serial Messaging Protocol. N.p., n.d. Web. 20 Nov. 2016.

Appendix

Appendix A
Attached is the user manual from Dr. Urs Gaudenz about the OpenDrop hardware.

Appendix B
For this specification, we are referencing the installation process for MicroDrop onto OpenDrop.

The users must be able to make this installation in order to use our plugin. Essentially, MicroDrop must
be installed first which is why this is an important specification and step. We want our users to be able to
install the software quickly and easily. Below are the steps to do so.

Downloading the Microdrop software

The latest Microdrop release is available here (see what's new in this version). Note that if you have previously
installed a pre 1.0 version, you should uninstall it before installing the latest version. By default, every time
you launch the application, it will check for updates online.

We also provide a self-extracting portable version which you can run from a folder on your computer or a USB
thumb drive. Note that this option does not require Administrator privileges and allows you to easily switch
between multiple versions of the software on the same computer.

Installing the control board plugin

Before you can actually use the Microdrop software, you will need to install a control board plugin. We
currently support the dmf_control_board plugin (used for the DropBot) and have recently added support for the
OpenDrop (note that you need to be connected to the internet for this next step).

1. Select "File/Manage Plugins" from the menu.
2. Click the "Download plugin" button.
3. Select "dmf_control_board" or "open_drop" from the list and click "OK".

A few seconds later you should see a message box telling you that the plugin was installed successfully.
Plugins are stored in a folder called "Microdrop/plugins" which will be automatically created in your "My
Documents" folder (or in the root of the portable distribution). The program will then shut itself down and you
will need to restart it to finish the plugin installation.

If you haven't flashed the firmware onto your system, you may need to do so before you can connect to it
through Microdrop. Here are links to instructions for the DropBot and OpenDrop.

This information comes from ("UserGuide – Microdrop." UserGuide – Microdrop. N.p., n.d. Web. 17 Nov.
2016.)

Appendix C
Here are the Gantt sheets for the Fall Quarter and beginning of Winter Qtr. The respective Gantt charts
are under Management Plan.

http://www.gaudi.ch/GaudiLabs/?page_id=392
https://pypi.python.org/pypi/open-drop/
http://microfluidics.utoronto.ca/trac/dropbot/wiki/TroubleshootingGuide#FlashingnewfirmwareontotheArduino
http://microfluidics.utoronto.ca/update/application/latest/microdrop/
http://microfluidics.utoronto.ca/dropbot
http://microfluidics.utoronto.ca/downloads/microdrop_portable-1.0.exe
http://microfluidics.utoronto.ca/microdrop/wiki/ChangeLog
http://microfluidics.utoronto.ca/trac/dropbot/wiki/ControlBoard#Software

Figure xx: Gantt Sheet Fall Quarter

Figure xx. Gantt Sheet Winter (Weeks 1 - 4)

Appendix D
Larger images of the Design Verification charts.

FMEA Chart

Design Verification Plan

