132 research outputs found

    Observatoire Scientifique en Appui à la GEstion du territoire (OSAGE) : entre espaces, temps, milieux, sociétés et informatique

    Get PDF
    L'article constitue une réflexion globale et conceptuelle autour de la notion d'observatoire scientifique en appui à la gestion du territoire. Il est le fruit d'une réflexion interdisciplinaire. Le terme observatoire recouvre de nombreuses acceptions et, à l'heure actuelle, de nombreuses réalisations existent sous diverses formes. Notre objectif est de tirer parti de la synergie entre scientifiques de divers domaines afin de prendre en compte la valeur ajoutée que constitue l'expertise scientifique pour clarifier la définition et les principes constitutifs fondamentaux de tels systèmes. Nous déclinons la vision de ce type d'observatoire au travers d’une approche conceptuelle. L'accent est mis sur le dispositif scientifique, et la déclinaison technique envisagée

    Evolution of oxygen isotopic composition in the inner solar nebula

    Full text link
    Changes in the chemical and isotopic composition of the solar nebula with time are reflected in the properties of different constituents that are preserved in chondritic meteorites. CR carbonaceous chondrites are among the most primitive of all chondrite types and must have preserved solar nebula records largely unchanged. We have analyzed the oxygen and magnesium isotopes in a range of the CR constituents of different formation temperatures and ages, including refractory inclusions and chondrules of various types. The results provide new constraints on the time variation of the oxygen isotopic composition of the inner (<5 AU) solar nebula - the region where refractory inclusions and chondrules most likely formed. A chronology based on the decay of short-lived 26Al (t1/2 ~ 0.73 Ma) indicates that the inner solar nebula gas was 16O-rich when refractory inclusions formed, but less than 0.8 Ma later, gas in the inner solar nebula became 16O-poor and this state persisted at least until CR chondrules formed ~1-2 Myr later. We suggest that the inner solar nebula became 16O-poor because meter-size icy bodies, which were enriched in 17,18O due to isotopic self-shielding during the ultraviolet photo dissociation of CO in the protosolar molecular cloud or protoplanetary disk, agglomerated outside the snowline, drifted rapidly towards the Sun, and evaporated at the snowline. This led to significant enrichment in 16O-depleted water, which then spread through the inner solar system. Astronomical studies of the spatial and/or temporal variations of water abundance in protoplanetary disks may clarify these processes.Comment: 27 pages, 5 figure

    Experimental phase function and degree of linear polarization curve of olivine and spinel and the origin of the Barbarian polarization behaviour

    Get PDF
    We explore experimentally possible explanations of the polarization curves of the sunlight reflected by the Barbarian asteroids. Their peculiar polarization curves are characterized by a large-inversion angle, around 30 degrees, which could be related to the presence of FeO-bearing spinel embedded in Calcium-Aluminum inclusions. In order to test this hypothesis, we have measured the phase function and degree of linear polarization of six samples of Mg-rich olivine and spinel. For each material, we have analysed the light scattering properties of a millimeter-sized grain and of two powdered samples with size distributions in the micrometer size range. The three spinel samples show a well-defined negative polarization branch with an inversion phase angle located around 24 degrees-30 degrees. In contrast, in the case of the olivine samples, the inversion angle is highly dependent on particle size and tends to decrease for larger sizes. We identify the macroscopic geometries as a possible explanation for the evident differences in the polarization curves between olivine and spinel millimeter samples. Although the polarization behaviour in near backscattering of the Barbara asteroid is similar to that of our spinel mm-sized sample in random orientation, this similarity could result in part from crystal retro-reflection rather than composition. This is part of an ongoing experimental project devoted to test separately several components of CV3-like meteorites, representative of the Barbarians composition, to disentangle their contributions to the polarization behaviour of these objects.Peer reviewe

    On automatic class insertion with overloading

    Get PDF
    Also published in Proceedings of the 11th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications (OOPSLA)International audienceSeveral algorithms [Cas92, MS89, Run92, DDHL94a, DDHL95, GMM95] have been proposed to automatically insert a class into an inheritance hierarchy. But actual hierarchies all include overriden and overloaded properties that these algorithms handle either very partially or not at all. Partially handled means handled provided there is a separate given function f able to compare overloaded properties [DDHL95, GMM95].In this paper, we describe a new version of our algorithm (named Ares) which handles automatic class insertion more efficiently using such a function f. Although impossible to fully define, this function can be computed for a number of well defined cases of overloading and overriding. We give a classification of such cases and describe the computation process for a well-defined set of nontrivial cases.The algorithm preserves these important properties:- preservation of the maximal factorization of properties- preservation of the underlying structure (Galois lattice) of the input hierarchy- conservation of relevant classes of the input hierarchy with their properties

    Thermal fatigue as the origin of regolith on small asteroids

    Get PDF
    Space missions and thermal infrared observations3 have shown that small asteroids (kilometre-sized or smaller) are covered by a layer of centimetre-sized or smaller particles, which constitute the regolith. Regolith generation has traditionally been attributed to the fall back of impact ejecta and by the break-up of boulders bymicrometeoroid impact. Laboratory experiments6 and impact models, however, show that crater ejecta velocities are typically greater than several tens of centimetres per second,which corresponds to the gravitational escape velocity of kilometre-sized asteroids.Therefore, impact debris cannot be the main source of regolith on small asteroids. Here we report that thermal fatigue, a mechanism of rock weathering and fragmentation with no subsequent ejection, is the dominant process governing regolith generation on small asteroids.We find that thermal fragmentation induced by the diurnal temperature variations breaks up rocks larger than a few centimetres more quickly than do micrometeoroid impacts. Because thermal fragmentation is independent of asteroid size, this process can also contribute to regolith production on larger asteroids. Production of fresh regolith originatingin thermal fatigue fragmentationmay be an important process for the rejuvenation of the surfaces of near-Earth asteroids, and may explain the observed lack of low-perihelion, carbonaceous, near-Earth asteroids

    An evaporite sequence from ancient brine recorded in Bennu samples.

    Get PDF
    Evaporation or freezing of water-rich fluids with dilute concentrations of dissolved salts can produce brines, as observed in closed basins on Earth1 and detected by remote sensing on icy bodies in the outer Solar System2,3. The mineralogical evolution of these brines is well understood in regard to terrestrial environments4, but poorly constrained for extraterrestrial systems owing to a lack of direct sampling. Here we report the occurrence of salt minerals in samples of the asteroid (101955) Bennu returned by the OSIRIS-REx mission5. These include sodium-bearing phosphates and sodium-rich carbonates, sulfates, chlorides and fluorides formed during evaporation of a late-stage brine that existed early in the history of Bennus parent body. Discovery of diverse salts would not be possible without mission sample return and careful curation and storage, because these decompose with prolonged exposure to Earths atmosphere. Similar brines probably still occur in the interior of icy bodies Ceres and Enceladus, as indicated by spectra or measurement of sodium carbonate on the surface or in plumes2,3

    Deep EST profiling of developing fenugreek endosperm to investigate galactomannan biosynthesis and its regulation

    Get PDF
    Galactomannans are hemicellulosic polysaccharides composed of a (1 → 4)-linked β-D-mannan backbone substituted with single-unit (1 → 6)-α-linked D-galactosyl residues. Developing fenugreek (Trigonella foenum-graecum) seeds are known to accumulate large quantities of galactomannans in the endosperm, and were thus used here as a model system to better understand galactomannan biosynthesis and its regulation. We first verified the specific deposition of galactomannans in developing endosperms and determined that active accumulation occurred from 25 to 38 days post anthesis (DPA) under our growth conditions. We then examined the expression levels during seed development of ManS and GMGT, two genes encoding backbone and side chain synthetic enzymes. Based on transcript accumulation dynamics for ManS and GMGT, cDNA libraries were constructed using RNA isolated from endosperms at four ages corresponding to before, at the beginning of, and during active galactomannan deposition. DNA from these libraries was sequenced using the 454 sequencing technology to yield a total of 1.5 million expressed sequence tags (ESTs). Through analysis of the EST profiling data, we identified genes known to be involved in galactomannan biosynthesis, as well as new genes that may be involved in this process, and proposed a model for the flow of carbon from sucrose to galactomannans. Measurement of in vitro ManS and GMGT activities and analysis of sugar phosphate and nucleotide sugar levels in the endosperms of developing fenugreek seeds provided data consistent with this model. In vitro enzymatic assays also revealed that the ManS enzyme from fenugreek endosperm preferentially used GDP-mannose as the substrate for the backbone synthesis

    Atelier ORIXAS: Projeto Tripartite África/Brasil/França: luta contra a desertificação: promoção da segurança alimentar e redução da pobreza.

    Get PDF
    No âmbito do Programa de Cooperação Científica Tripartite entre a Agence Inter-établissements de Recherche pourle Développement (AIRD), Agence Panafricaine de la Grande Muraille Verte (APGMV) e o Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), o projeto ORIXAS "Observatórios Regionais Integrados de Regiões Árida, Semiáridas e Sub-úmidas secas" concebido em uma visão transversal, foca principalmente em metodologias e ferramentas para apoiar dispositivos de monitoramento ambiental para ser aplicado nos países inseridos na iniciativa africana Grande Muralha Verde - GMV (Burkina-Faso, Djibouti, Érythrée, Éthiopie, Mali, Mauritanie, Niger, Nigeria, Sénégal, Soudan, Tchad) e tem como objetivo desenvolver abordagens metodológicas e produtos compartilhados para melhorar a avaliação e monitoramento da desertificação e os impactos diretos ou indiretos de iniciativas para lutar contra o desmatamento e desertificação no âmbito da GMV. Esta publicação contempla aspectos metodológicos utilizados pelo projeto "ORIXAS" durante a primeira oficina de trabalho coletivo África-Brasil-França - Atelier (MAISON DE LA TÉLÉDÉTECTION), realizada de 10 a 19 de junho de 2014, em Montpellier França, objetivando informar a forma de execução dos estudos que vêm sendo realizados no escopo do projeto, visando principalmente a luta contra a desertificação, promoção da segurança alimentar e redução da pobreza nos países inseridos na iniciativa africana Grande Muralha Verde - GMV.bitstream/item/123193/1/DOC-174-Atelier-Orixas.pd
    corecore