3,394 research outputs found
Fluctuations of a driven membrane in an electrolyte
We develop a model for a driven cell- or artificial membrane in an
electrolyte. The system is kept far from equilibrium by the application of a DC
electric field or by concentration gradients, which causes ions to flow through
specific ion-conducting units (representing pumps, channels or natural pores).
We consider the case of planar geometry and Debye-H\"{u}ckel regime, and obtain
the membrane equation of motion within Stokes hydrodynamics. At steady state,
the applied field causes an accumulation of charges close to the membrane,
which, similarly to the equilibrium case, can be described with renormalized
membrane tension and bending modulus. However, as opposed to the equilibrium
situation, we find new terms in the membrane equation of motion, which arise
specifically in the out-of-equilibrium case. We show that these terms lead in
certain conditions to instabilities.Comment: 7 pages, 2 figures. submitted to Europhys. Let
On U_q(SU(2))-symmetric Driven Diffusion
We study analytically a model where particles with a hard-core repulsion
diffuse on a finite one-dimensional lattice with space-dependent, asymmetric
hopping rates. The system dynamics are given by the
\mbox{U[SU(2)]}-symmetric Hamiltonian of a generalized anisotropic
Heisenberg antiferromagnet. Exploiting this symmetry we derive exact
expressions for various correlation functions. We discuss the density profile
and the two-point function and compute the correlation length as well
as the correlation time . The dynamics of the density and the
correlations are shown to be governed by the energy gaps of a one-particle
system. For large systems and depend only on the asymmetry. For
small asymmetry one finds indicating a dynamical exponent
as for symmetric diffusion.Comment: 10 pages, LATE
Meandering instability of curved step edges on growth of a crystalline cone
We study the meandering instability during growth of an isolated
nanostructure, a crystalline cone, consisting of concentric circular steps. The
onset of the instability is studied analytically within the framework of the
standard Burton-Cabrera-Frank model, which is applied to describe step flow
growth in circular geometry. We derive the correction to the most unstable
wavelength and show that in general it depends on the curvature in a
complicated way. Only in the asymptotic limit where the curvature approaches
zero the results are shown to reduce to the rectangular case. The results
obtained here are of importance in estimating growth regimes for stable
nanostructures against step meandering.Comment: 4 pages, 3 figures, RevTe
Information transport by sine-Gordon solitons in microtubules
We study the problem of information propagation in brain microtubules. After
considering the propagation of electromagnetic waves in a fluid of permanent
electric dipoles, the problem reduces to the sine-Gordon wave equation in one
space and one time dimensions. The problem of propagation of information is
thus set.Comment: 3 page
Magic Islands and Barriers to Attachment: A Si/Si(111)7x7 Growth Model
Surface reconstructions can drastically modify growth kinetics during initial
stages of epitaxial growth as well as during the process of surface
equilibration after termination of growth. We investigate the effect of
activation barriers hindering attachment of material to existing islands on the
density and size distribution of islands in a model of homoepitaxial growth on
Si(111)7x7 reconstructed surface. An unusual distribution of island sizes
peaked around "magic" sizes and a steep dependence of the island density on the
growth rate are observed. "Magic" islands (of a different shape as compared to
those obtained during growth) are observed also during surface equilibration.Comment: 4 pages including 5 figures, REVTeX, submitted to Physical Review
An interacting spin flip model for one-dimensional proton conduction
A discrete asymmetric exclusion process (ASEP) is developed to model proton
conduction along one-dimensional water wires. Each lattice site represents a
water molecule that can be in only one of three states; protonated,
left-pointing, and right-pointing. Only a right(left)-pointing water can accept
a proton from its left(right). Results of asymptotic mean field analysis and
Monte-Carlo simulations for the three-species, open boundary exclusion model
are presented and compared. The mean field results for the steady-state proton
current suggest a number of regimes analogous to the low and maximal current
phases found in the single species ASEP [B. Derrida, Physics Reports, {\bf
301}, 65-83, (1998)]. We find that the mean field results are accurate
(compared with lattice Monte-Carlo simulations) only in the certain regimes.
Refinements and extensions including more elaborate forces and pore defects are
also discussed.Comment: 13pp, 6 fig
Recommended from our members
RbAp48 Protein Is a Critical Component of GPR158/OCN Signaling and Ameliorates Age-Related Memory Loss
Precisely deciphering the molecular mechanisms of age-related memory loss is crucial to create appropriate therapeutic interventions. We have previously shown that the histone-binding protein RbAp48/Rbbp4 is a molecular determinant of Age-Related Memory Loss. By exploring how this protein regulates the genomic landscape of the hippocampal circuit, we find that RbAp48 controls the expression of BDNF and GPR158 proteins, both critical components of osteocalcin (OCN) signaling in the mouse hippocampus. We show that inhibition of RbAp48 in the hippocampal formation inhibits OCN’s beneficial functions in cognition and causes deficits in discrimination memory. In turn, disruption of OCN/GPR158 signaling leads to the downregulation of RbAp48 protein, mimicking the discrimination memory deficits observed in the aged hippocampus. We also show that activation of the OCN/GPR158 pathway increases the expression of RbAp48 in the aged dentate gyrus and rescues age-related memory loss
Long-Term Potentiation: One Kind or Many?
Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds
Speciesistic Veganism: An Anthropocentric Argument
The paper proposes an anthropocentric argument for veganism based on a speciesistic premise that most carnists likely affirm: human flourishing should be promoted. I highlight four areas of human suffering promoted by a carnistic diet: (1) health dangers to workers (both physical and psychological), (2) economic dangers to workers, (3) physical dangers to communities around slaughterhouses, and (4) environmental dangers to communities-at-large. Consequently, one could ignore the well-being of non-human animals and nevertheless recognize significant moral failings in the current standard system of meat production
- …