1,679 research outputs found

    High-fidelity view of the structure and fragmentation of the high-mass, filamentary IRDC G11.11-0.12

    Get PDF
    Star formation in molecular clouds is intimately linked to their internal mass distribution. We present an unprecedentedly detailed analysis of the column density structure of a high-mass, filamentary molecular cloud, namely IRDC G11.11-0.12 (G11). We use two novel column density mapping techniques: high-resolution (FWHM=2", or ~0.035 pc) dust extinction mapping in near- and mid-infrared, and dust emission mapping with the Herschel satellite. These two completely independent techniques yield a strikingly good agreement, highlighting their complementarity and robustness. We first analyze the dense gas mass fraction and linear mass density of G11. We show that G11 has a top heavy mass distribution and has a linear mass density (M_l ~ 600 Msun pc^{-1}) that greatly exceeds the critical value of a self-gravitating, non-turbulent cylinder. These properties make G11 analogous to the Orion A cloud, despite its low star-forming activity. This suggests that the amount of dense gas in molecular clouds is more closely connected to environmental parameters or global processes than to the star-forming efficiency of the cloud. We then examine hierarchical fragmentation in G11 over a wide range of size-scales and densities. We show that at scales 0.5 pc > l > 8 pc, the fragmentation of G11 is in agreement with that of a self-gravitating cylinder. At scales smaller than l < 0.5 pc, the results agree better with spherical Jeans' fragmentation. One possible explanation for the change in fragmentation characteristics is the size-scale-dependent collapse time-scale that results from the finite size of real molecular clouds: at scales l < 0.5 pc, fragmentation becomes sufficiently rapid to be unaffected by global instabilities.Comment: 8 pages, 8 figures, accepted to A&

    A comparison between conventional and LANDSAT based hydrologic modeling: The Four Mile Run case study

    Get PDF
    Models designed to support the hydrologic studies associated with urban water resources planning require input parameters that are defined in terms of land cover. Estimating the land cover is a difficult and expensive task when drainage areas larger than a few sq. km are involved. Conventional and LANDSAT based methods for estimating the land cover based input parameters required by hydrologic planning models were compared in a case study of the 50.5 sq. km (19.5 sq. mi) Four Mile Run Watershed in Virginia. Results of the study indicate that the LANDSAT based approach is highly cost effective for planning model studies. The conventional approach to define inputs was based on 1:3600 aerial photos, required 110 man-days and a total cost of 14,000.TheLANDSATbasedapproachrequired6.9mandaysandcost14,000. The LANDSAT based approach required 6.9 man-days and cost 2,350. The conventional and LANDSAT based models gave similar results relative to discharges and estimated annual damages expected from no flood control, channelization, and detention storage alternatives

    Materijal matrica za tlačno lijevanje

    Get PDF
    In the contribution the stress of die materials of thermal fatigue is defined and material life is derived theoretically and compared with the measured values. The important properties of the die materials as thermal conductivity, coefficient of thermal expansivity, modulus of elasticity and mechanical properties are described. Binding to it single die materials as carbon steels and chrome-tungsten steels are analyzed. As the perspective die material for pressure die casting of ferrous metals appears molybdenum with regard to advantageous properties.U članku je definirano naprezanje materijala pri toplinskom umoru i izveden teorijski životno (radno) vrijeme materijala te uspoređene sa izmjerenim vrijednostima. Opisana su važna svojstva materijala, kao što je toplinska vodljivost, koefi cijent toplinske rastegljivosti, modul elastičnosti i mehanička svojstva. U nastavku su analizirani materijali kao što su ugljični čelici te krom-volframovi čelici. Kao perspektivni materijal za tlačno lijevanje željeznih slitina se pojavljuje molibdan sa prestižnim svojstvima

    Materials on dies for pressure die casting

    Get PDF
    In the contribution the stress of die materials of thermal fatigue is defi ned and material life is derived theoretically and compared with the measured values. The important properties of the die materials as thermal conductivity, coeffi cient of thermal expansivity, modulus of elasticity and mechanical properties are described. Binding to it single die materials as carbon steels and chrome-tungsten steels are analyzed. As the perspective die material for pressure die casting of ferrous metals appears molybdenum with regard to advantageous properties

    The prevalence of star formation as a function of Galactocentric radius

    Get PDF
    We present large-scale trends in the distribution of star-forming objects revealed by the Hi-GAL survey. As a simple metric probing the prevalence of star formation in Hi-GAL sources, we define the fraction of the total number of Hi-GAL sources with a 70 μm counterpart as the ‘star-forming fraction’ or SFF. The mean SFF in the inner galactic disc (3.1 kpc < RGC < 8.6 kpc) is 25 per cent. Despite an apparent pile-up of source numbers at radii associated with spiral arms, the SFF shows no significant deviations at these radii, indicating that the arms do not affect the star-forming productivity of dense clumps either via physical triggering processes or through the statistical effects of larger source samples associated with the arms. Within this range of Galactocentric radii, we find that the SFF declines with RGC at a rate of −0.026 ±0.002 per kiloparsec, despite the dense gas mass fraction having been observed to be constant in the inner Galaxy. This suggests that the SFF may be weakly dependent on one or more large-scale physical properties of the Galaxy, such as metallicity, radiation field, pressure or shear, such that the dense sub-structures of molecular clouds acquire some internal properties inherited from their environment

    Incorporating Sarbanes-Oxley Into A College Accounting Curriculum: Lessons Learned

    Get PDF
    This paper attempts to identify the ways and give examples of how Sarbanes-Oxley compliance can be taught in real time using the SAP R/3 system and the many lessons derived from the experience. The Sarbanes-Oxley Act significantly impacts CEO&rsquo;s, CFO&rsquo;s and public accountants. It also applies to all levels of management. Organizations and their managers need to recognize the significance of Sarbanes-Oxley compliance as well as the benefits it can provide. These benefits include reliability of the financial statements, quality of reporting, and also the opportunity to review a company&rsquo;s processes and enhance the efficiency of all financial and operating departments. Integrating SAP technology into the classroom has been one of the primary initiatives of the Department of Accounting, a signature program at Saint Joseph&rsquo;s University, in Philadelphia, Pennsylvania.&nbsp; The implementation and roll-out process has covered a variety of areas from navigation to key business processes and accounting within SAP R/3.&nbsp; With the evolution of the Sarbanes-Oxley Act and the need for compliance within a company, the department decided that students should be given exposure on how to use SAP R/3 to conduct 404 walkthroughs in consonance with the Sarbanes-Oxley initiatives. Due to the integrative nature of SAP technology the system is best able to conduct audit processes and create exception reports needed to identify material weaknesses and deficiencies

    Hierarchical fragmentation and collapse signatures in a high-mass starless region

    Full text link
    Aims: Understanding the fragmentation and collapse properties of the dense gas during the onset of high-mass star formation. Methods: We observed the massive (~800M_sun) starless gas clump IRDC18310-4 with the Plateau de Bure Interferometer (PdBI) at sub-arcsecond resolution in the 1.07mm continuum andN2H+(3-2) line emission. Results: Zooming from a single-dish low-resolution map to previous 3mm PdBI data, and now the new 1.07mm continuum observations, the sub-structures hierarchically fragment on the increasingly smaller spatial scales. While the fragment separations may still be roughly consistent with pure thermal Jeans fragmentation, the derived core masses are almost two orders of magnitude larger than the typical Jeans mass at the given densities and temperatures. However, the data can be reconciled with models using non-homogeneous initial density structures, turbulence and/or magnetic fields. While most sub-cores remain (far-)infrared dark even at 70mum, we identify weak 70mum emission toward one core with a comparably low luminosity of ~16L_sun, re-enforcing the general youth of the region. The spectral line data always exhibit multiple spectral components toward each core with comparably small line widths for the individual components (in the 0.3 to 1.0km/s regime). Based on single-dish C18O(2-1) data we estimate a low virial-to-gas-mass ratio <=0.25. We discuss that the likely origin of these spectral properties may be the global collapse of the original gas clump that results in multiple spectral components along each line of sight. Even within this dynamic picture the individual collapsing gas cores appear to have very low levels of internal turbulence.Comment: 8 pages, 4 figures, A&A in pres

    Kinematic structure of massive star-forming regions - I. Accretion along filaments

    Get PDF
    The mid- and far-infrared view on high-mass star formation, in particular with the results from the Herschel space observatory, has shed light on many aspects of massive star formation. However, these continuum studies lack kinematic information. We study the kinematics of the molecular gas in high-mass star-forming regions. We complemented the PACS and SPIRE far-infrared data of 16 high-mass star-forming regions from the Herschel key project EPoS with N2H+ molecular line data from the MOPRA and Nobeyama 45m telescope. Using the full N2H+ hyperfine structure, we produced column density, velocity, and linewidth maps. These were correlated with PACS 70micron images and PACS point sources. In addition, we searched for velocity gradients. For several regions, the data suggest that the linewidth on the scale of clumps is dominated by outflows or unresolved velocity gradients. IRDC18454 and G11.11 show two velocity components along several lines of sight. We find that all regions with a diameter larger than 1pc show either velocity gradients or fragment into independent structures with distinct velocities. The velocity profiles of three regions with a smooth gradient are consistent with gas flows along the filament, suggesting accretion flows onto the densest regions. We show that the kinematics of several regions have a significant and complex velocity structure. For three filaments, we suggest that gas flows toward the more massive clumps are present.Comment: accepted by A&

    Landau Damping of Spin Waves in Trapped Boltzmann Gases

    Get PDF
    A semiclassical method is used to study Landau damping of transverse pseudo-spin waves in harmonically trapped ultracold gases in the collisionless Boltzmann limit. In this approach, the time evolution of a spin is calculated numerically as it travels in a classical orbit through a spatially dependent mean field. This method reproduces the Landau damping results for spin-waves in unbounded systems obtained with a dielectric formalism. In trapped systems, the simulations indicate that Landau damping occurs for a given spin-wave mode because of resonant phase space trajectories in which spins are "kicked out" of the mode (in spin space). A perturbative analysis of the resonant and nearly resonant trajectories gives the Landau damping rate, which is calculated for the dipole and quadrupole modes as a function of the interaction strength. The results are compared to a numerical solution of the kinetic equation by Nikuni et al.Comment: 6 pages, 2 figure

    Fragmentation and dynamical collapse of the starless high-mass star-forming region IRDC18310-4

    Get PDF
    Aims: We study the fragmentation and dynamical properties of a massive starless gas clump at the onset of high-mass star formation. Methods: Based on Herschel continuum data we identify a massive gas clump that remains far-infrared dark up to 100mum wavelengths. The fragmentation and dynamical properties are investigated by means of Plateau de Bure Interferometer and Nobeyama 45m single-dish spectral line and continuum observations. Results: The massive gas reservoir fragments at spatial scales of ~18000AU in four cores. Comparing the spatial extent of this high-mass region with intermediate- to low-mass starless cores from the literature, we find that linear sizes do not vary significantly over the whole mass regime. However, the high-mass regions squeeze much more gas into these similar volumes and hence have orders of magnitude larger densities. The fragmentation properties of the presented low-to high-mass regions are consistent with gravitational instable Jeans fragmentation. Furthermore, we find multiple velocity components associated with the resolved cores. Recent radiative transfer hydrodynamic simulations of the dynamic collapse of massive gas clumps also result in multiple velocity components along the line of sight because of the clumpy structure of the regions. This result is supported by a ratio between viral and total gas mass for the whole region <1. Conclusions: This apparently still starless high-mass gas clump exhibits clear signatures of early fragmentation and dynamic collapse prior to the formation of an embedded heating source. A comparison with regions of lower mass reveals that the linear size of star-forming regions does not necessarily have to vary much for different masses, however, the mass reservoirs and gas densities are orders of magnitude enhanced for high-mass regions compared to their lower-mass siblings.Comment: 11 pages, 10 figures, accepted to Astronomy and Astrophysics, high-resolution version with all figures included can be found at http://www.mpia.de/homes/beuther/papers.htm
    corecore