1,217 research outputs found
Heavy Quark Radiative Energy Loss - Applications to RHIC
Heavy quark energy loss in a hot QCD plasma is computed taking into account
the competing effects due to suppression of zeroth order gluon radiation bellow
the plasma frequency and the enhancement of gluon radiation due to transition
energy loss and medium induced Bremsstrahlung. Heavy quark medium induced
radiative energy loss is derived to all orders in opacity, .
Numerical evaluation of the energy loss suggest small suppression of high
charm quarks, and therefore provide a possible explanation for the
null effects observed by PHENIX in the prompt electron spectrum in as
and 200 AGeV.Comment: 4 pages, 4 figures, Contributed to 17th International Conference on
Ultra Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland,
California, 11-17 Jan 200
Study of electron anti-neutrinos associated with gamma-ray bursts using KamLAND
We search for electron anti-neutrinos () from long and
short-duration gamma-ray bursts~(GRBs) using data taken by the KamLAND detector
from August 2002 to June 2013. No statistically significant excess over the
background level is found. We place the tightest upper limits on
fluence from GRBs below 7 MeV and place first constraints on
the relation between luminosity and effective temperature.Comment: 16 pages and 5 figure
Recommended from our members
Pseudorapidity Dependence of Particle Production and Elliptic Flow in Asymmetric Nuclear Collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200 GeV.
Asymmetric nuclear collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200 GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production dN_{ch}/dη in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow v_{2} over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow
KamLAND Sensitivity to Neutrinos from Pre-Supernova Stars
In the late stages of nuclear burning for massive stars (M>8~M_{\sun}), the
production of neutrino-antineutrino pairs through various processes becomes the
dominant stellar cooling mechanism. As the star evolves, the energy of these
neutrinos increases and in the days preceding the supernova a significant
fraction of emitted electron anti-neutrinos exceeds the energy threshold for
inverse beta decay on free hydrogen. This is the golden channel for liquid
scintillator detectors because the coincidence signature allows for significant
reductions in background signals. We find that the kiloton-scale liquid
scintillator detector KamLAND can detect these pre-supernova neutrinos from a
star with a mass of 25~M_{\sun} at a distance less than 690~pc with 3
significance before the supernova. This limit is dependent on the neutrino mass
ordering and background levels. KamLAND takes data continuously and can provide
a supernova alert to the community.Comment: 19 pages, 6 figures, 1 tabl
Recommended from our members
Measurements of μμ pairs from open heavy flavor and Drell-Yan in p+p collisions at s =200 GeV
PHENIX reports differential cross sections of μμ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in p+p collisions at s=200 GeV at forward and backward rapidity (1.2<|η|<2.2). The μμ pairs from cc, bb, and Drell-Yan are separated using a template fit to unlike- and like-sign muon pair spectra in mass and pT. The azimuthal opening angle correlation between the muons from cc and bb decays and the pair-pT distributions are compared to distributions generated using pythia and powheg models, which both include next-to-leading order processes. The measured distributions for pairs from cc are consistent with pythia calculations. The cc data present narrower azimuthal correlations and softer pT distributions compared to distributions generated from powheg. The bb data are well described by both models. The extrapolated total cross section for bottom production is 3.75±0.24(stat)±0.500.35(syst)±0.45(global) [μb], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy and is approximately a factor of 2 higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations
Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations
The jet fragmentation function is measured with direct photon-hadron
correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the
photon is an excellent approximation to the initial p_T of the jet and the
ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation
function. A statistical subtraction is used to extract the direct photon-hadron
yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_
AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates
modification of the jet fragmentation function. Suppression, most likely due to
energy loss in the medium, is seen at high z_T. The fragment yield at low z_T
is enhanced at large angles. Such a trend is expected from redistribution of
the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to
Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
