233 research outputs found
UniquID: A Quest to Reconcile Identity Access Management and the Internet of Things
The Internet of Things (IoT) has caused a revolutionary paradigm shift in
computer networking. After decades of human-centered routines, where devices
were merely tools that enabled human beings to authenticate themselves and
perform activities, we are now dealing with a device-centered paradigm: the
devices themselves are actors, not just tools for people. Conventional identity
access management (IAM) frameworks were not designed to handle the challenges
of IoT. Trying to use traditional IAM systems to reconcile heterogeneous
devices and complex federations of online services (e.g., IoT sensors and cloud
computing solutions) adds a cumbersome architectural layer that can become hard
to maintain and act as a single point of failure. In this paper, we propose
UniquID, a blockchain-based solution that overcomes the need for centralized
IAM architectures while providing scalability and robustness. We also present
the experimental results of a proof-of-concept UniquID enrolment network, and
we discuss two different use-cases that show the considerable value of a
blockchain-based IAM.Comment: 15 pages, 10 figure
Picking battles: The impact of trust assumptions on the elaboration of security requirements
This position paper describes work on trust assumptions in the con-text of security requirements. We show how trust assumptions can affect the scope of the analysis, derivation of security requirements, and in some cases how functionality is realized. An example shows how trust assumptions are used by a requirements engineer to help define and limit the scope of analysis and to document the decisions made during the process
A Survey of Trust in Internet Applications
Trust is an important aspect of decision making for Intemet applications and particularly influences the specification of security policy i.e. who is authorised to perform actions as well as the techniques needed to manage and implement security to and for the applications. This survey examines the various definitions of trust in the literature and provides a working definition of trust for Intemet applications. The properties of trust relationships are explained and classes of different types of trust identified in the literature are discussed with examples. Some influential examples of trust management systems are described
Increasing the simulation performance of large-scale evacuations using parallel computing techniques based on domain decomposition
Evacuation simulation has the potential to be used as part of a decision support system during large-scale incidents to provide advice to incident commanders. To be viable in these applications, it is essential that the simulation can run many times faster than real time. Parallel processing is a method of reducing run times for very large computational simulations by distributing the workload amongst a number of processors. This paper presents the development of a parallel version of the rule based evacuation simulation software buildingEXODUS using domain decomposition. Four Case Studies (CS) were tested using a cluster, consisting of 10 Intel Core 2 Duo (dual core) 3.16 GHz CPUs. CS-1 involved an idealised large geometry, with 20 exits, intended to illustrate the peak computational speed up performance of the parallel implementation, the population consisted of 100,000 agents; the peak computational speedup (PCS) was 14.6 and the peak real-time speedup (PRTS) was 4.0. CS-2 was a long area with a single exit area with a population of 100,000 agents; the PCS was 13.2 and the PRTS was 17.2. CS-3 was a 50 storey high rise building with a population of 8000/16,000 agents; the PCS was 2.48/4.49 and the PRTS was 17.9/12.9. CS-4 is a large realistic urban area with 60,000/120,000 agents; the PCS was 5.3/6.89 and the PRTS was 5.31/3.0. This type of computational performance opens evacuation simulation to a range of new innovative application areas such as real-time incident support, dynamic signage in smart buildings and virtual training environments
Negotiating boundaries of care: an interpretative phenomenological analysis of the relational conflicts surrounding home mechanical ventilation following traumatic spinal cord injury
Objectives: The aim of this study is to explore the phenomena of mechanical ventilation following traumatic spinal cord injury from three simultaneous perspectives; patients who require full-time mechanical ventilation (n=8), their informal family carers (n=8) and their formal carers (n=11). We focus upon the intra and inter- personal challenges of establishing boundaries within the triad. Design: Qualitative study. Methods: Semi-structured interviews were transcribed verbatim and analysed using interpretative phenomenological analysis (IPA). In order to encapsulate the inter-subjective, multi-dimensional and relational aspects of the experience, we focussed on recurrent themes which were independently reported across all three participant groups. Results: One major inter-connected recurrent theme was identified: 1) “Negotiating boundaries of care and finding a ‘fit’”. It centres around establishing a “line”, or a boundary, which was imperative for retaining a sense of independence (for patients), a sense of home and privacy (for informal carers) and difficulties balancing complex care provision with the needs of family members so as not to cross that “line” (for formal carers). Conclusions: The findings highlight the need for focussing on a “fit” within the triad, balancing boundaries of care in order to establish a productive, satisfactory psycho-social environment for all three participant groups to live and/or work within. Recommendations for both future care provision and future research are suggested
Reflections on the 35th BCS Human-Computer Interaction Conference at Keele University
The following are short reflections from interactions gallery chairs, workshops organisers and members of the host organising committee
Effect of Dietary Components on Larval Life History Characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae)
Background: The ability to respond to heterogenous nutritional resources is an important factor in the adaptive radiation of insects such as the highly polyphagous Medfly. Here we examined the breadth of the Medfly’s capacity to respond to different developmental conditions, by experimentally altering diet components as a proxy for host quality and novelty. Methodology/Principal Findings: We tested responses of larval life history to diets containing protein and carbohydrate components found in and outside the natural host range of this species. A 40% reduction in the quantity of protein caused a significant increase in egg to adult mortality by 26.5%±6% in comparison to the standard baseline diet. Proteins and carbohydrates had differential effects on larval versus pupal development and survival. Addition of a novel protein source, casein (i.e. milk protein), to the diet increased larval mortality by 19.4%±3% and also lengthened the duration of larval development by 1.93±0.5 days in comparison to the standard diet. Alteration of dietary carbohydrate, by replacing the baseline starch with simple sugars, increased mortality specifically within the pupal stage (by 28.2%±8% and 26.2%±9% for glucose and maltose diets, respectively). Development in the presence of the novel carbohydrate lactose (milk sugar) was successful, though on this diet there was a decrease of 29.8±1.6 µg in mean pupal weight in comparison to pupae reared on the baseline diet. Conclusions: The results confirm that laboratory reared Medfly retain the ability to survive development through a wide range of fluctuations in the nutritional environment. We highlight new facets of the responses of different stages of holometabolous life histories to key dietary components. The results are relevant to colonisation scenarios and key to the biology of this highly invasive species
Composing Trust Models towards Interoperable Trust Management
Part 2: Full PapersInternational audienceComputational trust is a central paradigm in today's Internet as our modern society is increasingly relying upon online transactions and social net- works. This is indeed leading to the introduction of various trust management systems and associated trust models, which are customized according to their target applications. However, the heterogeneity of trust models prevents exploiting the trust knowledge acquired in one context in another context although this would be beneficial for the digital, ever-connected environment. This is such an issue that this paper addresses by introducing an approach to achieve interoperability between heterogeneous trust management systems. Specifically, we define a trust meta-model that allows the rigorous specification of trust models as well as their composition. The resulting composite trust models enable heterogeneous trust management systems to interoperate transparently through mediators
Potential for rapid antibody detection to identify tuberculous cattle with non-reactive tuberculin skin test results
Abstract Background Bovine tuberculosis (TB) control programs generally rely on the tuberculin skin test (TST) for ante-mortem detection of Mycobacterium bovis-infected cattle. Results Present findings demonstrate that a rapid antibody test based on Dual-Path Platform (DPP®) technology, when applied 1-3 weeks after TST, detected 9 of 11 and 34 of 52 TST non-reactive yet M. bovis-infected cattle from the US and GB, respectively. The specificity of the assay ranged from 98.9% (n = 92, US) to 96.0% (n = 50, GB) with samples from TB-free herds. Multi-antigen print immunoassay (MAPIA) revealed the presence of antibodies to multiple antigens of M. bovis in sera from TST non-reactors diagnosed with TB. Conclusions Thus, use of serologic assays in series with TST can identify a significant number of TST non-reactive tuberculous cattle for more efficient removal from TB-affected herds
Spreading the sparing: Against a limited-capacity account of the attentional blink.
The identification of the second of two targets presented in close succession is often impaired-a phenomenon referred to as the attentional blink. Extending earlier work (Di Lollo, Kawahara, Ghorashi, and Enns, in Psychological Research 69:191-200, 2005), the present study shows that increasing the number of targets in the stream can lead to remarkable improvements as long as there are no intervening distractors. In addition, items may even recover from an already induced blink whenever they are preceded by another target. It is shown that limited memory resources contribute to overall performance, but independent of the attentional blink. The findings argue against a limited-capacity account of the blink and suggest a strong role for attentional control processes that may be overzealously applied. © 2005 Springer-Verlag
- …