
Open Research Online
The Open University’s repository of research publications
and other research outputs

Picking battles: The impact of trust assumptions on
the elaboration of security requirements
Conference or Workshop Item

How to cite:

Haley, Charles B.; Laney, Robin C.; Moffett, Jonathan D. and Nuseibeh, Bashar (2004). Picking battles: The
impact of trust assumptions on the elaboration of security requirements. In: Proceedings of the Second International
Conference on Trust Management (iTrust’04), 29 Mar - 1 Apr 2004, Oxford, UK.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://www.trustmanagement.cclrc.ac.uk/Home/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/12842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://www.trustmanagement.cclrc.ac.uk/Home/
http://oro.open.ac.uk/policies.html

Picking Battles: the Impact of Trust Assumptions on
the Elaboration of Security Requirements

Charles B. Haley1, Robin C. Laney1, Jonathan D. Moffett2, Bashar Nuseibeh1

1 Department of Computing, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK

{C.B.Haley, R.C.Laney, B.A.Nuseibeh} [at] open.ac.uk
2 Department of Computer Science, University of York

Heslington, York, YO10 5DD, UK
jdm [at] cs.york.ac.uk

Abstract. This position paper describes work on trust assumptions in the con-
text of security requirements. We show how trust assumptions can affect the
scope of the analysis, derivation of security requirements, and in some cases
how functionality is realized. An example shows how trust assumptions are
used by a requirements engineer to help define and limit the scope of analysis
and to document the decisions made during the process.

1 Introduction

Requirements engineering is about determining the characteristics of a system-to-be,
and how well these characteristics fit with the desires of the stakeholders. A system-
to-be includes all the diverse components needed to achieve its purpose, such as the
computers, the people who will use, maintain, and depend on the system and the
environment the system exists within. Stakeholders are those entities (e.g. people,
companies) that have some reason to care about the system’s characteristics. A de-
scription of these characteristics is the system’s requirements.

Security requirements are an important component of a system’s requirements.
They arise because stakeholders assert that some objects, tangible (e.g. cash) or in-
tangible (e.g. information), have direct or indirect value. Such objects are called as-
sets, and the stakeholders naturally wish to protect their value. Assets can be harmed,
or can be used to cause indirect harm, such as to reputation. Security requirements
ensure that these undesirable outcomes cannot take place.

Security requirements often assume the existence of an attacker. The goal of an at-
tacker is to cause harm. Leaving aside harm caused by accident, if one can show that
no attackers exist, then security is irrelevant. An attacker wishes to cause harm by
exploiting an asset in some undesirable way. The possibility of such an exploitation is
called a threat. An attack exploits a vulnerability in the system to carry out a threat.

It is useful to reason about the attacker as if he or she were a type of stakeholder
(e.g. [1; 9; 10]). The attacker would therefore have requirements; he or she wants a
system to have characteristics that create vulnerabilities. The requirements engineer

wants the attacker’s requirements to not be met. To accomplish this, one specifies
sufficient constraints on the behavior of a system to ensure that vulnerabilities are
kept to an acceptable minimum [11]. Security requirements specify these constraints.

A system-level analysis is required to obtain security requirements. Without
knowledge of a system’s components, the requirements engineer is limited to general
statements about a system’s security needs. Nothing can be said about how the needs
are met. To determine security requirements, one must look deeper; we propose to
use problem frames [8] to accomplish this. In a problem frames analysis, this means
looking at and describing the behavior of domains within the context of the system.

While reasoning about security, a requirements engineer must make decisions
about how much to trust the supplied indicative (observable) properties of domains
that make up the system and evaluate the risks associated with being wrong. These
decisions are trust assumptions, and they can have a fundamental impact on how the
system is realized [13]. Trust assumptions can affect which domains must be ana-
lyzed, the risk that vulnerabilities exist, and the risk that a system design is stable.
During analysis, trust assumptions permit the requirements engineer to pick battles,
deciding which domains need further analysis and which do not.

This paper describes combining trust assumptions, problem frames, and threat de-
scriptions in order to aid in derivation of security requirements. Section 2 provides
background material on problem frames. Section 3 discusses security requirements.
Section 4 describes the role of trust assumptions. Section 5 presents related work, and
section 6 concludes.

2 Problem Frames

All problems involve the interaction of domains that exist in the world. The prob-
lem frames notation [8] is useful for diagramming the domains involved in a problem
and the interconnections (phenomena) between them, and for analyzing their behav-
ior. For example, assume that working with stakeholders produces a requirement
“open door when the door-open button is pushed.” Figure 1 illustrates satisfying the
requirement with a basic automatic door system. The first domain is the door mecha-
nism domain, capable of opening and shutting the door. The second is the domain
requesting that the door be opened; including both the ‘button’ to be pushed and the
human pushing the button. The third is the machine, the domain being designed to
fulfill the requirement that the door open when the button is pushed. The dashed-line
oval presents the requirement that the problem is to satisfy. The dashed arrow from
the oval indicates which domain is to be constrained by the requirement.

Every domain has inter-
faces, which are defined by
the phenomena visible to
other domains. Descriptions
of phenomena of given (ex-
isting) domains are indica-
tive; the phenomena and
resulting behavior can be
observed. Descriptions of

Control
Machine

Door
Mechanism

Person +
Button

Open door
when button

pushed

Figure 1 – A basic problem frames diagram

phenomena of designed domains
(domains to be built as part of
the solution) are optative; one
wishes to observe the phenom-
ena in the future. To illustrate the
idea of phenomena, consider the
person+button domain in Figure
1. The domain might produce the
event phenomena ButtonDown
and ButtonUp when the button is
respectively pushed and released.
Alternatively, it might produce the single event OpenDoor, combining the two events
into one.

The two fundamental diagram types in a problem frames analysis are the context
diagram and the problem frame diagrams. The context diagram shows all the do-
mains in a system, and how they are interconnected. The problem frame diagrams
each examine a problem in the system, showing how a given requirement (problem)
is to be satisfied. In systems with only one requirement, the context diagram and the
problem frame diagram are almost identical. For most systems, though, the domains
in the problem frame diagrams are a projection of the context, showing only the do-
mains or groups of domains of interest to the particular problem.

Figure 2 shows a context diagram for a system that will be used as an example
throughout the remainder of this paper. The system is a subset of a Human Resources
system. There are two functional requirements, of which we will consider the second.

Personal
Information

Benefits
Information

Salary
Information

Machine

Display People

Figure 2 – Example Context Diagram

− Salary, personal, and benefits information shall be able to be entered, changed,
and deleted by HR staff. This information is referred to as payroll information.

− Users shall have access to kiosks located at convenient locations throughout the
building and able to display an ‘address list’ subset of personal information con-
sisting of any employee’s name, office, and work telephone number.

The problem diagram for the second requirement (the ‘address list’ function) is
shown in Figure 3. Phenomena are intentionally omitted. The security requirements
will be added in the next section.

3 Security Requirements

Security requirements come into existence to prevent harm by attacks on assets [5;
11]. An asset is something in the context of the system, tangible or not, that is to be
protected [7]. A threat is the
potential for abuse of an asset
that will cause harm in the
context of the problem. A
vulnerability is a weakness in
the system that an attack
exploits. Security require-
ments are constraints on
functional requirements,

Display
Information

Info
Display
Machine

Figure 3 –Address list

User

Display
address list

info
Address

Info

intended to reduce the scope of vulnerabilities.
The security community provides general categories for constraints, labeling them

using the acronym CIA, and more recently more ‘A’s [12]:
− Confidentiality: ensure that an asset is visible only to those actors authorized to

see it. This is larger than ‘read access to a file’, as it can include, for example,
visibility of a data stream on a network.

− Integrity: ensure that the asset is not corrupted. As above, integrity is larger than
‘write access to a file’, including operations such as triggering transactions that
should not occur.

− Availability: ensure that the asset is readily accessible to actors that need it. Avail-
ability is best explained by a counterexample, such as preventing a company from
doing business by denying it access to something important.

− Authentication & accountability: ensure that the source of the asset, actor, or ac-
tion is known. One example is the simple login. More complex examples include
mutual authentication (e.g. exchanging cryptography keys) and non-repudiation.

By inverting the sense of these categories, one can construct descriptions of possi-
ble threats on assets. These threat descriptions are phrases of the form performing
action X on/to asset Y could cause harm Z [5]. Referring to the example presented
above, some possible threat descriptions are:
− Changing salary data could increase salary costs, lowering earnings.
− Exposing addresses (to headhunters) could cause loss of employees, raising costs.
To use the threat descriptions, the requirements engineer examines each problem
frame diagram, looking to see if the asset mentioned in the threat is found in the prob-
lem. If the asset is found, then the requirements engineer must apply constraints on
the problem to ensure that the asset is not vulnerable to being used in the way that the
action in the threat description requires. These constraints are security requirements.
The security requirements are satisfied by changing the problem in a way that
changes the behavior of the domains.

Analysis of Figure 3 shows that there are vulnerabilities that allow the threats to be
realized. Attackers can see the data on the network. Nothing prevents an attacker
from accessing the system. In order to maintain confidentiality and integrity of the
data, the network needs to be protected and employees need to be authenticated. A
design decision is made to encrypt data on the network, and appropriate constraints
and phenomena are added. Our next problem is employee authentication; we will
solve this problem in the next section.

4 Trust Assumptions

A requirements engineer determines how a requirement is satisfied using the charac-
teristics of the domains in the problem. A similar relationship exists between security
requirements and trust assumptions; how security requirements are satisfied depends
on the trust assumptions made by the requirements engineer.

We use the definition of trust proposed by Grandison & Sloman [4]: “[Trust] is the
quantified belief by a trustor with respect to the competence, honesty, security and
dependability of a trustee within a specified context”. In our case, the requirements

engineer trusts that some domain will participate ‘competently and honestly’ in the
satisfaction of a security requirement in the context of the problem.

Adding trust assumptions serves two purposes. The first is to limit the scope of the
analysis to the domains in the context. The second is to document how the require-
ments engineer chooses to trust other domains that are in the context for some other
reason. To illustrate the former, assume a requirement stipulating that the computers
operate for up to eight hours in the event of a power failure. The requirements engi-
neer satisfies this requirement by adding backup generators to the system. In most
cases, the engineer can trust the manufacturer of the generators to supply equipment
without vulnerabilities that permit an attacker to take control of the generators. By
making this trust assumption, the requirements engineer does not need to include the
supply chain of the generators in the analysis.

Returning to our example, we see that trust assumptions must be added to the dia-
gram to complete the picture. For example, the analysis does not explain why the
encrypted networks and authentication are considered secure or how address informa-
tion is to be protected. The IT organization convinces the requirements engineer that
the encryption software and keys built into the system are secure, and that the keys
control access to the address information. Choosing to accept the explanations, the
engineer adds three trust assumptions (TA1 – TA3) to the problem frame diagram.

There are threats against the name and address information which indicate that
confidentiality of the information must be maintained. To counter the threats, the
requirements engineer proposes that the information be limited to people having au-
thentication information and able to log in. The IT department refuses on cost
grounds. The stakeholders refuse because of ease-of-use.

Further questioning reveals that the front door of the building is protected by a se-
curity guard; the guard restricts entrance to authorized personnel. The security man-
ager agrees that the security guard can stand in for authentication. A trust assumption
(TA4) is added, having the effect of changing the people domain to employees by
restricting membership to people allowed in by the building security system. Figure 4
shows the resulting problem frames diagram.

The example shows that trust assumptions restrict domain membership. For exam-
ple, the building security system trust assumption restricts membership of the people

Display
Information

Figure 4 – Address list revisited

Employee

Machine

TA1: IT Admin:
SW & keys are

secure

TA4: Building
Security System:

only employees pass

Address
Info

Encr.
Net

M!data(KeyInfData)
AI!data(KeyInfData)

TA3: IT
Admin: keys
restrict access

Display address list
info

- Only to authorized
people

TA2: IT Admin:
domains are

secure

domain to people acceptable to the door guard, effectively converting the domain to
employees.

The IT Admin: keys restrict access trust assumption is a special case. The domain
being limited is an ‘others’ domain representing people not permitted to see the data.
This domain isn’t in the context. Adding the domain and connecting the trust assump-
tion would restrict the domain’s membership to null. Rather than adding a null do-
main, the trust assumption is expressed in terms of its effect and attached to the do-
main that caused the trust assumption to come into existence.

5 Related Work

We are not aware of other work investigating the capture of a requirements engi-
neer’s trust assumptions about the domains that make up the solution to the problem.

Several groups are looking at the role of trust in security requirements engineering.
In the i* framework [14; 16], Yu, Lin, & Mylopoulos take an ‘actor, intention, goal’
approach where security and trust relationships within the model are modeled as
“softgoals”: goals that have no quantitative measure for satisfaction. The Tropos
project [3] uses the i* framework, adding wider lifecycle coverage. Gans et al [2] add
distrust and “speech acts”. Yu and Cysneiros have added privacy to the mix [15]. All
of these models are concerned with analyzing trust relations between actors/agents in
the running system. As such, an i* model complements the approach presented here,
and in fact can be used to determine the goals and requirements.

He and Antón [6] are concentrating on privacy, working on mechanisms to assist
trusting of privacy policies, for example on web sites. They propose a context-based
access model. The framework, like i*, describes run-time properties, not the require-
ments engineer’s assumptions about the domains forming the solution.

6 Conclusions and Future Work

We have described an approach for using trust assumptions while reasoning about
security requirements. The approach makes a strong distinction between system re-
quirements and machine specifications, permitting the requirements engineer to
choose how to conform to the requirements. The trust assumptions embedded in the
domain inform the requirements engineer, better enabling him or her to choose be-
tween alternate ways of satisfying the functional requirements while ensuring that
vulnerabilities are removed or not created.

Work on trust assumptions is part of a larger context wherein security require-
ments are determined using the crosscutting properties of threat descriptions [5]. The
trust assumptions will play a critical role in analyzing cost and risk. The quantifica-
tion of the level of trust, not yet used, will be important in this context.

Acknowledgements: The financial support of the Leverhulme Trust is gratefully
acknowledged. Thanks also go to Michael Jackson for his many insights about prob-
lem frames and requirements, and to the anonymous reviewers for their helpful com-
ments.

References:
1. Crook, R., Ince, D., Lin, L., Nuseibeh, B.: "Security Requirements Engineering: When

Anti-Requirements Hit the Fan," In Proceedings of the IEEE Joint International Confer-
ence on Requirements Engineering (RE'02). Essen Germany (2002) 203-205.

2. Gans, G., et al.: "Requirements Modeling for Organization Networks: A (Dis)Trust-Based
Approach," In 5th IEEE International Symposium on Requirements Engineering (RE'01).
Toronto, Canada: IEEE Computer Society Press (27-31 Aug 2001) 154-165.

3. Giorgini, P., Massacci, F., Mylopoulos, J.: "Requirement Engineering Meets Security: A
Case Study on Modelling Secure Electronic Transactions by VISA and Mastercard," In
Proceedings of the 22nd International Conference on Conceptual Modeling. Chicago IL
USA: Springer-Verlag Heidelberg (13-16 Oct 2003) 263-276.

4. Grandison, T., Sloman, M.: "Trust Management Tools for Internet Applications," In The
First International Conference on Trust Management. Heraklion, Crete, Greece: Springer
Verlag (28-30 May 2003).

5. Haley, C. B., Laney, R. C., Nuseibeh, B.: "Deriving Security Requirements from Cross-
cutting Threat Descriptions," In Proceedings of the Fourth International Conference on
Aspect-Oriented Software Development (AOSD'04). Lancaster UK: ACM Press (22-26
Mar 2004).

6. He, Q., Antón, A. I.: "A Framework for Modeling Privacy Requirements in Role Engi-
neering" at Ninth International Workshop on Requirements Engineering: Foundation for
Software Quality, The 15th Conference on Advanced Information Systems Engineering
(CAiSE'03), Klagenfurt/Velden, Austria (16 Jun 2003).

7. ISO/IEC: Information Technology - Security Techniques - Evaluation Criteria for IT
Security - Part 1: Introduction and General Model. ISO/IEC: Geneva Switzerland, 15408-
1 (1 Dec 1999).

8. Jackson, M.: Problem Frames. Addison Wesley, 2001.
9. van Lamsweerde, A., Brohez, S., De Landtsheer, R., Janssens, D.: "From System Goals to

Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engi-
neering" at Requirements for High Assurance Systems Workshop (RHAS'03), Eleventh
International Requirements Engineering Conference (RE'03), Monterey, CA USA (8 Sep
2003).

10. Lin, L., Nuseibeh, B., Ince, D., Jackson, M., Moffett, J.: "Introducing Abuse Frames for
Analyzing Security Requirements," In Proceedings of the 11th IEEE International Re-
quirements Engineering Conference (RE'03). Monterey CA USA (8-12 Sep 2003) 371-
372.

11. Moffett, J. D., Nuseibeh, B.: A Framework for Security Requirements Engineering, De-
partment of Computer Science. University of York, UK, YCS368 (August 2003).

12. Pfleeger, C. P., Pfleeger, S. L.: Security in Computing. Prentice Hall, 2002.
13. Viega, J., McGraw, G.: Building Secure Software: How to Avoid Security Problems the

Right Way. Addison Wesley, 2002.
14. Yu, E.: "Towards Modelling and Reasoning Support for Early-Phase Requirements Engi-

neering," In Proceedings of the Third IEEE International Symposium on Requirements
Engineering (RE'97). Annapolis MD USA (6-10 Jan 1997) 226-235.

15. Yu, E., Cysneiros, L. M.: "Designing for Privacy and Other Competing Requirements," In
Second Symposium on Requirements Engineering for Information Security (SREIS'02).
Raleigh, NC USA (15-16 Oct 2002).

16. Yu, E., Liu, L.: "Modelling Trust for System Design Using the i* Strategic Actors Frame-
work," In Trust in Cyber-societies, Integrating the Human and Artificial Perspectives, R.
Falcone, M. P. Singh, Y.-H. Tan, eds. Springer-Verlag Heidelberg (2001) 175-194.

	Introduction
	Problem Frames
	Security Requirements
	Trust Assumptions
	Related Work
	Conclusions and Future Work

