593 research outputs found
Is the GSI anomaly due to neutrino oscillations? - A real time perspective -
We study a model for the "GSI anomaly" in which we obtain the time evolution
of the population of parent and daughter particles directly in real time,
considering explicitly the quantum entanglement between the daughter particle
and neutrino mass eigenstates in the two-body decay. We confirm that the decay
rate of the parent particle and the growth rate of the daughter particle do
\emph{not} feature a time modulation from interference of neutrino mass
eigenstates. The lack of interference is a consequence of the orthogonality of
the mass eigenstates. This result also follows from the density matrix obtained
by tracing out the unobserved neutrino states. We confirm this result by
providing a complementary explanation based on Cutkosky rules applied to the
Feynman diagram that describes the self-energy of the parent particle.Comment: 11 page
Q-Value for the Fermi Beta-Decay of 46V
By comparing the Q-values for the 46Ti(3He,t)46V and 47Ti(3He,t)47}V
reactions to the isobaric analog states the Q-value for the superallowed
Fermi-decay of 46V has been determined as Q_{EC}(46V)=(7052.11+/-0.27) keV. The
result is compatible with the values from two recent direct mass measurements
but is at variance with the previously most precise reaction Q-value. As
additional input quantity we have determined the neutron separation energy
S_n(47Ti)=(8880.51+/-0.25) keV
Possible experimental signature of octupole correlations in the 0 states of the actinides
= 0 states have been investigated in the actinide nucleus
Pu up to an excitation energy of 3 MeV with a high-resolution (p,t)
experiment at = 24 MeV. To test the recently proposed = 0
double-octupole structure, the phenomenological approach of the
spdf-interacting boson model has been chosen. In addition, the total 0
strength distribution and the strength fragmentation have been compared
to the model predictions as well as to the previously studied (p,t) reactions
in the actinides. The results suggest that the structure of the 0 states
in the actinides might be more complex than the usually discussed pairing
isomers. Instead, the octupole degree of freedom might contribute
significantly. The signature of two close-lying 0 states below the
2-quasiparticle energy is presented as a possible manifestation of strong
octupole correlations in the structure of the 0 states in the actinides.Comment: 6 pages, 5 figures, published in Phys. Rev. C 88, 041303(R) (2013
An experimental study of the rearrangements of valence protons and neutrons amongst single-particle orbits during double {\beta} decay in 100Mo
The rearrangements of protons and neutrons amongst the valence
single-particle orbitals during double {\beta} decay of 100Mo have been
determined by measuring cross sections in (d,p), (p,d), (3He,{\alpha}) and
(3He,d) reactions on 98,100Mo and 100,102Ru targets. The deduced nucleon
occupancies reveal significant discrepancies when compared with theoretical
calculations; the same calculations have previously been used to determine the
nuclear matrix element associated with the decay probability of double {\beta}
decay of the 100Mo system.Comment: 18 pages, 13 figures, 37 pages of supplemental informatio
Further insight into Bayesian and Akaike information criteria of the EC-decay rate oscillations
Search for supernova-produced 60Fe in a marine sediment
An 60Fe peak in a deep-sea FeMn crust has been interpreted as due to the
signature left by the ejecta of a supernova explosion close to the solar system
2.8 +/- 0.4 Myr ago [Knie et al., Phys. Rev. Lett. 93, 171103 (2004)]. To
confirm this interpretation with better time resolution and obtain a more
direct flux estimate, we measured 60Fe concentrations along a dated marine
sediment. We find no 60Fe peak at the expected level from 1.7 to 3.2 Myr ago.
However, applying the same chemistry used for the sediment, we confirm the 60Fe
signal in the FeMn crust. The cause of the discrepancy is discussed.Comment: 15 pages, 5 figures, submitted to PR
An experiment for the measurement of the bound-beta decay of the free neutron
The hyperfine-state population of hydrogen after the bound-beta decay of the
neutron directly yields the neutrino left-handedness or a possible right-handed
admixture and possible small scalar and tensor contributions to the weak force.
Using the through-going beam tube of a high-flux reactor, a background free
hydrogen rate of ca. 3 s can be obtained. The detection of the neutral
hydrogen atoms and the analysis of the hyperfine states is accomplished by Lamb
shift source type quenching and subsequent ionization. The constraints on the
neutrino helicity and the scalar and tensor coupling constants of weak
interaction can be improved by a factor of ten.Comment: 9 pages, 5 figures. Submitted to EPJ
- …
