
Further insight into Bayesian and Akaike information criteria of the EC-decay
rate oscillations∗

N. Winckler1,2, F. Bosch1, P. Bühler3, T. Faestermann4, P. Kienle† 4, Yu.A. Litvinov1,2, M.S. Sanjari1,5,
D. Shubina1,2, and the Two-Body Weak Decay collaboration1

1GSI, Darmstadt; 2MPI-K, Heidelberg; 3SMI, Vienna; 4TU, Munich; 5EMMI, Darmstadt

Introduction

We discuss the Akaike and Bayesian information crite-
ria obtained from the model and data set presented in [1].
Both criteria are model-selection methods that consists in
penalizing the log-likelihood as a function of the parame-
ters: ICi = −2 log(L(θ̂i|data, Mi)) + AnKi. The Akaike
information criterion (AIC) is a measure of the relative
goodness of fit of a statistical model. Under appropriate
conditions, the model that minimizes the AIC corresponds
to the one that minimizes the Kullback-Leibler divergence
with respect to the true unknown distribution.

The Bayesian Information Criterion (BIC) stems from
Bayesian probabilities. If proper conditions are satisfied,
it is twice the negative logarithm of the marginal likeli-
hood, i.e. −2 log(P (data|Mi)). From the BIC difference
of model Mi and Mj , i.e. ΔBICi, an approximation of the
Bayes’ factor : Bi,j ≈ exp(−ΔBICi/2) can be obtained.
In this sense, the minimum BIC corresponds to the best
model describing the data.

Results

The AIC and BIC values have been obtained from un-
binned maximum likelihood method [2] and are thus free
from any approximation. The AIC and BIC values as well
as their differences and weights are listed in the table. Note
that ΔAIC and ΔBIC values in the table are defined with
respect to the minimum IC value : ΔIC = ICi − ICmin.
The Bayesian and Akaike weights are both defined for two
models Mi, Mj as wi = e−ΔICi/2

e−ΔICi/2+e−ΔICj/2 . We observe
that the AIC and BIC model selection methods can lead to
different conclusion depending on the data.

Discussion: AIC vs BIC

It is a priori not trivial to choose between the AIC and
BIC as they rely on various assumptions and asymptotic
approximations, which in both cases are considered unre-
alistic [3]. Usually AIC prefers complex models and BIC
simpler ones [3]. Although information criteria stem from
different paradigms, the decision making of choosing M 1
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EC data β+ data EC data
(245 MHz res.) (245 MHz res.) (cap. pick-up)

N 3616 2912 2989

AIC0 28683.5 22711.2 23718.4
AIC1 28674.7 22710.4 23689.4

ΔAIC0 8.78 0.8 29
w0 1.2 % 40.1 % 5× 10−5%
w1 98.8% 59.9% 100(1− w0)%

BIC0 28689.67 22717.1 23724.4
BIC1 28699.26 22734.3 23713.4

ΔBIC0 0 0 11
ΔBIC1 9.6 17 0
B0,1 121.5 4914.7 0.0041
w0 99.2% 99.98% 0.4%
w1 0.8% 0.02% 99.6%

αAIC ≈ 20% ≈ 20% ≈ 20%
αBIC 6.1× 10−3% 8.2× 10−3% 7.96× 10−3%

rather than M0 is mathematically equivalent to a likelihood
ratio test in rejecting the null when:

−2 log(L0/L1) > An(K1 −K0) (1)

where the rejection region is given by the right hand
term.The likelihood ratio distribution obtained from MC-
toys is in very good agreement with a χ2

4 distribution1.
Thus, in the case of AIC, rejecting the null translates in
the frequentist interpretation to a likelihood ratio test at an
α level of P (χ2

4 > 6) = 0.199. In the case of BIC the α
level depends on the sample size (c.f. αBIC in table). Here
we observe that AIC would have, in the frequentist inter-
pretation, a Type I error rate of about 20% while for BIC
the error rates decrease as the sample size increases and
are all below 10−2%. On the other hand, the Type II error
rates are in general lower for AIC than for BIC [3]. There-
fore in situations where Type I error has to be avoided, the
BIC is usually prefered. And vice versa, AIC is recom-
manded against Type II error. In the case of the resonator
EC-data M1 is favoured if AIC is used and M0 in the case
of the BIC. In order to resolve this issue, a proper alterna-
tive would be the computation of the Bayes’ factor from
unbinned likelihood, which would significantly reduce the
number of assumptions and approximations made.
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1From the Wilks theorem one expects a χ2
3 distribution which is not

obtained from MC toys. Assuming the Wilks theorem is valid in our case,
αAIC reduces to 11.1% and αBIC reduce slightly as well.
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