9,905 research outputs found

    Limitations on the extent of off-center displacements in TbMnO3 from EXAFS measurements

    Full text link
    We present EXAFS data at the Mn K and Tb L3 edges that provide upper limits on the possible displacements of any atoms in TbMnO3. The displacements must be less than 0.005-0.01A for all atoms which eliminates the possibility of moderate distortions (0.02A) with a small c-axis component, but for which the displacements in the ab plane average to zero. Assuming the polarization arises from a displacement of the O2 atoms along the c-axis, the measured polarization then leads to an O2 displacement that is at least 6X10^{-4}A, well below our experimental limit. Thus a combination of the EXAFS and the measured electrical polarization indicate that the atomic displacements likely lie in the range 6X10^{-4} - 5X10^{-3}A.Comment: submitted to PRB; 11 pages (preprint form) 7 figure

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: II. 1D hydrodynamical models of wind driven shocks

    Full text link
    Following the early Swift X-ray observations of the latest outburst of the recurrent nova RS Ophiuchi in February 2006 (Paper I), we present new 1D hydrodynamical models of the system which take into account all three phases of the remnant evolution. The models suggest a novel way of modelling the system by treating the outburst as a sudden increase then decrease in wind mass-loss rate and velocity. The differences between this wind model and previous Primakoff-type simulations are described. A more complex structure, even in 1D, is revealed through the presence of both forward and reverse shocks, with a separating contact discontinuity. The effects of radiative cooling are investigated and key outburst parameters such as mass-loss rate, ejecta velocity and mass are varied. The shock velocities as a function of time are compared to the ones derived in Paper I. We show how the manner in which the matter is ejected controls the evolution of the shock and that for a well-cooled remnant, the shock deceleration rate depends on the amount of energy that is radiated away.Comment: 9 pages, 5 figure

    Radio Frequency Models of Novae in eruption. I. The Free-Free Process in Bipolar Morphologies

    Get PDF
    Observations of novae at radio frequencies provide us with a measure of the total ejected mass, density profile and kinetic energy of a nova eruption. The radio emission is typically well characterized by the free-free emission process. Most models to date have assumed spherical symmetry for the eruption, although it has been known for as long as there have been radio observations of these systems, that spherical eruptions are to simplistic a geometry. In this paper, we build bipolar models of the nova eruption, assuming the free-free process, and show the effects of varying different parameters on the radio light curves. The parameters considered include the ratio of the minor- to major-axis, the inclination angle and shell thickness (further parameters are provided in the appendix). We also show the uncertainty introduced when fitting spherical model synthetic light curves to bipolar model synthetic light curves. We find that the optically thick phase rises with the same power law (Sνt2S_{\nu} \propto t^2) for both the spherical and bipolar models. In the bipolar case there is a "plateau" phase -- depending on the thickness of the shell as well as the ratio of the minor- to major-axis -- before the final decline, that follows the same power law (Sνt3S_{\nu} \propto t^{-3}) as in the spherical case. Finally, fitting spherical models to the bipolar model synthetic light curves requires, in the worst case scenario, doubling the ejected mass, more than halving the electron temperature and reducing the shell thickness by nearly a factor of 10. This implies that in some systems we have been over predicting the ejected masses and under predicting the electron temperature of the ejecta.Comment: 9 pages, 6 figures, accepted for publication in ApJ, accompanying movie to figure 3 available at http://www.ast.uct.ac.za/~valerio/papers/radioI

    Hydrodynamic mean field solutions of 1D exclusion processes with spatially varying hopping rates

    Full text link
    We analyze the open boundary partially asymmetric exclusion process with smoothly varying internal hopping rates in the infinite-size, mean field limit. The mean field equations for particle densities are written in terms of Ricatti equations with the steady-state current JJ as a parameter. These equations are solved both analytically and numerically. Upon imposing the boundary conditions set by the injection and extraction rates, the currents JJ are found self-consistently. We find a number of cases where analytic solutions can be found exactly or approximated. Results for JJ from asymptotic analyses for slowly varying hopping rates agree extremely well with those from extensive Monte Carlo simulations, suggesting that mean field currents asymptotically approach the exact currents in the hydrodynamic limit, as the hopping rates vary slowly over the lattice. If the forward hopping rate is greater than or less than the backward hopping rate throughout the entire chain, the three standard steady-state phases are preserved. Our analysis reveals the sensitivity of the current to the relative phase between the forward and backward hopping rate functions.Comment: 12 pages, 4 figure

    Echo-Mapping of Swift J1753.5-0127

    Get PDF
    We present two epochs of coordinated X-ray-optical timing observations of the black hole candidate Swift J1753.5-0127 during its 2005 outburst. The first epoch in July occurred at outburst peak. Two consecutive nights of observations using the McDonald Observatory Argos camera with the Rossi X-ray Timing Explorer show a consistent correlation with an immediate response and an extended tail lasting ~5s. The properties of the variability and the correlation are consistent with thermal reprocessing in an accretion disk. The shortness of the lag suggests a short orbital period consistent with that recently claimed. The second epoch in August used the VLT FORS2 HIT mode again in conjunction with RXTE. Again a repeatable correlation is seen between two independent subsets of the data. In this case, though, the cross-correlation function has an unusual structure comprising a dip followed by a double-peak. We suggest that this may be equivalent to the dip plus single peak structure seen by Kanbach et al. (2001) in XTE J1118+480 and attributed there to synchrotron emission; a similar structure was seen during later activity of Swift J1753.5-0127 by Durant et al. (2008).Comment: 7 pages, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Following a decade of research on the environmental impacts of microplastics, a knowledge gap remains on the processes by which micro and nanoplastics pass across biological barriers, enter cells and are subject to biological mechanisms. Here we summarize available literature on the accumulation of microplastics and their associated contaminants in a variety of organisms including humans. Most data on the accumulation of microplastics in both field and lab studies are for marine invertebrates. Microplastics accumulation data for insects, birds, marine mammals and sea turtles are scarce due to methodological issues. There is no conclusive evidence for the mode of accumulation of microplastics in either mammals or humans. The mechanism of chemical partitioning, role of contaminants associated with plastics, and mode of action of both nano- and micro-plastics and associated chemicals in a range of organisms and associated compartments/tissues also requires further research.Natural Environment Research Council (NERC)Queensland Department of Healt

    Balmer Line Variations in the Radio-Loud AGN PG 1512+370

    Full text link
    We present spectroscopic observations of the quasar PG~1512+370, covering the Hbeta line spectral range and collected at moderate resolution (2-7 A FWHM) from 1988 to 1996. The observations show that the blue wing of the Hbeta broad profile component has changed significantly in flux and shape between 1988 and 1990 and between 1995 and 1996. A displaced blue peak on the Hbeta profile, visible in 1988, but not in the 1990-1995 spectra, is revealed again in one of the spectra obtained in 1996. The blue peak (in both the 1988 and 1996 spectra) is centered at Delta v_r ~ -3000 +/- 500 km/s from the rest frame defined by the narrow component of Hbeta, and the OIII lambda4959,5007 lines. We discuss several conflicting interpretations of the data. We find that the variability of the Hbeta blue wing is consistent with Balmer line emission from regions whose motion is predominantly radial, if variations of the blue wing are a response to continuum changes. Alternatively, we note that observed Hbeta line profile variations are consistent with a variable line component as in a ``binary black hole'' scenario. More frequent observations of Hbeta are needed to distinguish among these hypotheses.Comment: 19 pages, 1 embedded figure (eps), to appear in ApJ 49

    Calculating energy derivatives for quantum chemistry on a quantum computer

    Get PDF
    Modeling chemical reactions and complicated molecular systems has been proposed as the `killer application' of a future quantum computer. Accurate calculations of derivatives of molecular eigenenergies are essential towards this end, allowing for geometry optimization, transition state searches, predictions of the response to an applied electric or magnetic field, and molecular dynamics simulations. In this work, we survey methods to calculate energy derivatives, and present two new methods: one based on quantum phase estimation, the other on a low-order response approximation. We calculate asymptotic error bounds and approximate computational scalings for the methods presented. Implementing these methods, we perform the world's first geometry optimization on an experimental quantum processor, estimating the equilibrium bond length of the dihydrogen molecule to within 0.014 Angstrom of the full configuration interaction value. Within the same experiment, we estimate the polarizability of the H2 molecule, finding agreement at the equilibrium bond length to within 0.06 a.u. (2% relative error).Comment: 19 pages, 1 page supplemental, 7 figures. v2 - tidied up and added example to appendice
    corecore