15,265 research outputs found

    Spatiotemporal and Wavenumber Resolved Bicoherence at the Low to High Confinement Transition in the TJ-II Stellarator

    Full text link
    Plasma turbulence is studied using Doppler reflectometry at the TJ-II stellarator. By scanning the tilt angle of the probing beam, different values of the perpendicular wave numbers are probed at the reflection layer. In this way, the interaction between zonal flows and turbulence is reported with (a) spatial, (b) temporal, and (c) wavenumber resolution for the first time in any magnetic confinement fusion device. We report measurements of the bicoherence across the Low to High (L--H) confinement transition at TJ-II. We examine both fast transitions and slow transitions characterized by an intermediate (I) phase. The bicoherence, understood to reflect the non-linear coupling between the perpendicular velocity (zonal flow) and turbulence amplitude, is significantly enhanced in a time window of several tens of ms around the time of the L--H transition. It is found to peak at a specific radial position (slightly inward from the radial electric field shear layer in H mode), and is associated with a specific perpendicular wave number (k612k_\perp \simeq 6-12 cm1^{-1}, kρs0.82k_\perp \rho_s \simeq 0.8-2). In all cases, the bicoherence is due to the interaction between high frequencies (1\simeq 1 MHz) and a rather low frequency (50\lesssim 50 kHz), as expected for a zonal flow.Comment: 11 pages, 3 figure

    Using highly excited baryons to catch the quark mass

    Get PDF
    Chiral symmetry in QCD can be simultaneously in Wigner and Goldstone modes, depending on the part of the spectrum examined. The transition regime between both, exploiting for example the onset of parity doubling in the high baryon spectrum, can be used to probe the running quark mass in the mid-IR power-law regime. In passing we also argue that three-quark states naturally group into same-flavor quartets, split into two parity doublets, all splittings decreasing high in the spectrum. We propose that a measurement of masses of high-partial wave Delta* resonances should be sufficient to unambiguously establish the approximate degeneracy and see the quark mass running. We test these concepts with the first computation of the spectrum of high-J excited baryons in a chiral-invariant quark model.Comment: 6 pages, 9 figures, To appear in the proceedings of the 19th International IUPAP Conference on Few-Body Problems in Physics; added acknowledgment, hyphenized author nam

    Probing the infrared quark mass from highly excited baryons

    Get PDF
    We argue that three-quark excited states naturally group into quartets, split into two parity doublets, and that the mass splittings between these parity partners decrease higher up in the baryon spectrum. This decreasing mass difference can be used to probe the running quark mass in the mid-infrared power-law regime. A measurement of masses of high-partial wave Delta* resonances should be sufficient to unambiguously establish the approximate degeneracy. We test this concept with the first computation of excited high-j baryon masses in a chirally invariant quark model.Comment: 4 pages, 4 figures. submitted to Phys Rev Letter

    Oddballs and a Low Odderon Intercept

    Get PDF
    We report an odderon Regge trajectory emerging from a field theoretical Coulomb gauge QCD model for the odd signature JPC (P=C= -1) glueball states (oddballs). The trajectory intercept is clearly smaller than the pomeron and even the omega trajectory's intercept which provides an explanation for the nonobservation of the odderon in high energy scattering data. To further support this result we compare to glueball lattice data and also perform calculations with an alternative model based upon an exact Hamiltonian diagonalization for three constituent gluons.Comment: 4 pages, 2 figures, 1 tabl

    Tetraquark spectroscopy

    Full text link
    A complete classification of tetraquark states in terms of the spin-flavor, color and spatial degrees of freedom was constructed. The permutational symmetry properties of both the spin-flavor and orbital parts of the quark-quark and antiquark-antiquark subsystems are discussed. This complete classification is general and model-independent, and is useful both for model-builders and experimentalists. The total wave functions are also explicitly constructed in the hypothesis of ideal mixing; this basis for tetraquark states will enable the eigenvalue problem to be solved for a definite dynamical model. This is also valid for diquark-antidiquark models, for which the basis is a subset of the one we have constructed. An evaluation of the tetraquark spectrum is obtained from the Iachello mass formula for normal mesons, here generalized to tetraquark systems. This mass formula is a generalizazion of the Gell-Mann Okubo mass formula, whose coefficients have been upgraded by means of the latest PDG data. The ground state tetraquark nonet was identified with f0(600)f_{0}(600), κ(800)\kappa(800), f0(980)f_{0}(980), a0(980)a_{0}(980). The mass splittings predicted by this mass formula are compared to the KLOE, Fermilab E791 and BES experimental data. The diquark-antidiquark limit was also studied.Comment: Invited talk at 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2007), Julich, Germany, 10-14 Sep 2007. In the Proceedings of 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2007), Julich, Germany, 10-14 Sep 2007, eConf C070910, 163 (2007

    Measuring public perceptions of sex offenders: reimagining the Community Attitudes Toward Sex Offenders (CATSO) scale

    Get PDF
    The Community Attitudes Toward Sex Offenders (CATSO) scale is an 18-item self-report questionnaire designed to measure respondents’ attitudes toward sex offenders. Its original factor structure has been questioned by a number of previous studies, and so this paper sought to reimagine the scale as an outcome measure, as opposed to a scale of attitudes. A face validity analysis produced a provisional three-factor structure underlying the CATSO: ‘punitiveness,’ ‘stereotype endorsement,’ and ‘risk perception.’ A sample of 400 British members of the public completed a modified version of the CATSO, the Attitudes Toward Sex Offenders scale, the General Punitiveness Scale, and the Rational-Experiential Inventory. A three-factor structure of a 22-item modified CATSO was supported using half of the sample, with factors being labeled ‘sentencing and management,’ ‘stereotype endorsement,’ and ‘risk perception.’ Confirmatory factor analysis on data from the other half of the sample endorsed the three-factor structure; however, two items were removed in order to improve ratings of model fit. This new 20-item ‘Perceptions of Sex Offenders scale’ has practical utility beyond the measurement of attitudes, and suggestions for its future use are provided

    On the determination of Θ+\Theta^+ quantum numbers and other topics of exotic baryons

    Get PDF
    In this talk I look into three different topics, addressing first a method to determine the quantum numbers of the Θ+\Theta^+, then exploiting the possibility that the Θ+\Theta^+ is a bound state of KπNK \pi N and in the third place I present results on a new resonant exotic baryonic state which appears as dynamically generated by the Weinberg Tomozawa ΔK\Delta K interaction.Comment: 9 pags. Talk in the NSTAR04 Workshop, Grenoble, march 200

    Fermion family recurrences in the Dyson-Schwinger formalism

    Get PDF
    We study the multiple solutions of the truncated propagator Dyson-Schwinger equation for a simple fermion theory with Yukawa coupling to a scalar field. Upon increasing the coupling constant gg, other parameters being fixed, more than one non-perturbative solution breaking chiral symmetry becomes possible and we find these numerically. These ``recurrences'' appear as a mechanism to generate different fermion generations as quanta of the same fundamental field in an interacting field theory, without assuming any composite structure. The number of recurrences or flavors is reduced to a question about the value of the Yukawa coupling, and has no special profound significance in the Standard Model. The resulting mass function can have one or more nodes and the measurement that potentially detects them can be thought of as a collider-based test of the virtual dispersion relation E=p2+M(p2)2E=\sqrt{p^2+M(p^2)^2} for the charged lepton member of each family. This requires three independent measurements of the charged lepton's energy, three-momentum and off-shellness. We illustrate how this can be achieved for the (more difficult) case of the tau lepton

    The Relevant Scale Parameter in the High Temperature Phase of QCD

    Get PDF
    We introduce the running coupling constant of QCD in the high temperature phase, g~2(T)\tilde{g}^2(T), through a renormalization scheme where the dimensional reduction is optimal at the one-loop level. We then calculate the relevant scale parameter, ΛT\Lambda_T, which characterizes the running of g~2(T)\tilde{g}^2(T) with TT, using the background field method in the static sector. It is found that ΛT/ΛMS=e(γE+1/22)/(4π)0.148\Lambda_T/\Lambda_{\overline{\text{MS}}} =e^{(\gamma_E+1/22)}/(4\pi)\approx 0.148. We further verify that the coupling g~2(T)\tilde{g}^2(T) is also optimal for lattice perturbative calculations. Our result naturally explains why the high temperature limit of QCD sets in at temperatures as low as a few times the critical temperature. In addition, our ΛT\Lambda_T agrees remarkably well with the scale parameter determined from the lattice measurement of the spatial string tension of the SU(2) gauge theory at high TT.Comment: 13 pages, RevTeX 3.0, no figures. Full postscript version available via anonymous ftp (192.84.132.4) at ftp://risc0.ca.infn.it/pub/private/lissia/infnca-th-94-24.p
    corecore