3,480 research outputs found

    Choice of studies at university, personality and socio-economic status. Comparison between French students in a public social sciences and humanities faculty and Brazilian law students in a private faculty

    Get PDF
    Several studies have examined the links between personality and choice of studies, particularly from a longitudinal point of view. This original research proposes to study these aspects a posteriori. The Rotter questionnaire (1966) was completed by two groups of students in psychology (N=65) and law (N= 91). The other particularity of the samples concerns the location and the differences in socio-economic backgrounds: privileged for law students in Brazil, modest for students in psychology in France. Most of the hypotheses put forward, particularly those related to the citizenship and political aspects, are verified on the basis of the binomial test

    Quantitative assessment of pinning forces and the superconducting gap in NbN thin films from complementary magnetic force microscopy and transport measurements

    Full text link
    Epitaxial niobium-nitride thin films with a critical temperature of Tc=16K and a thickness of 100nm were fabricated on MgO(100) substrates by pulsed laser deposition. Low-temperature magnetic force microscopy (MFM) images of the supercurrent vortices were measured after field cooling in a magnetic field of 3mT at various temperatures. Temperature dependence of the penetration depth has been evaluated by a two-dimensional fitting of the vortex profiles in the monopole-monopole model. Its subsequent fit to a single s-wave gap function results in the superconducting gap amplitude Delta(0) = 2.9 meV = 2.1*kB*Tc, in perfect agreement with previous reports. The pinning force has been independently estimated from local depinning of individual vortices by lateral forces exerted by the MFM tip and from transport measurements. A good quantitative agreement between the two techniques shows that for low fields, B << Hc2, MFM is a powerful and reliable technique to probe the local variations of the pinning landscape. We also demonstrate that the monopole model can be successfully applied even for thin films with a thickness comparable to the penetration depth.Comment: 6 pages, 6 figures, 2 table

    Distributed Control of Charging for Electric Vehicle Fleets Under Dynamic Transformer Ratings

    Get PDF
    Due to their large power draws and increasing adoption rates, electric vehicles (EVs) will become a significant challenge for electric distribution grids. However, with proper charging control strategies, the challenge can be mitigated without the need for expensive grid reinforcements. This article presents and analyzes new distributed charging control methods to coordinate EV charging under nonlinear transformer temperature ratings. Specifically, we assess the tradeoffs between required data communications, computational efficiency, and optimality guarantees for different control strategies based on a convex relaxation of the underlying nonlinear transformer temperature dynamics. Classical distributed control methods, such as those based on dual decomposition and alternating direction method of multipliers (ADMM), are compared against the new augmented Lagrangian-based alternating direction inexact Newton (ALADIN) method and a novel low-information, look-ahead version of packetized energy management (PEM). These algorithms are implemented and analyzed for two case studies on residential and commercial EV fleets with fixed and variable populations. The latter motivates a novel EV hub charging model that captures arrivals and departures. Simulation results validate the new methods and provide insights into key tradeoffs

    Gravitational Instability in Radiation Pressure Dominated Backgrounds

    Get PDF
    I consider the physics of gravitational instabilities in the presence of dynamically important radiation pressure and gray radiative diffusion, governed by a constant opacity, kappa. For any non-zero radiation diffusion rate on an optically-thick scale, the medium is unstable unless the classical gas-only isothermal Jeans criterion is satisfied. When diffusion is "slow," although the dynamical Jeans instability is stabilized by radiation pressure on scales smaller than the adiabatic Jeans length, on these same spatial scales the medium is unstable to a diffusive mode. In this regime, neglecting gas pressure, the characteristic timescale for growth is independent of spatial scale and given by (3 kappa c_s^2)/(4 pi G c), where c_s is the adiabatic sound speed. This timescale is that required for a fluid parcel to radiate away its thermal energy content at the Eddington limit, the Kelvin-Helmholz timescale for a radiation pressure supported self-gravitating object. In the limit of "rapid" diffusion, radiation does nothing to suppress the Jeans instability and the medium is dynamically unstable unless the gas-only Jeans criterion is satisfied. I connect with treatments of Silk damping in the early universe. I discuss several applications, including photons diffusing in regions of extreme star formation (starburst galaxies & pc-scale AGN disks), and the diffusion of cosmic rays in normal galaxies and galaxy clusters. The former (particularly, starbursts) are "rapidly" diffusing and thus cannot be supported against dynamical instability in the linear regime by radiation pressure alone. The latter are more nearly "slowly" diffusing. I speculate that the turbulence in starbursts may be driven by the dynamical coupling between the radiation field and the self-gravitating gas, perhaps mediated by magnetic fields. (Abridged)Comment: 15 pages; accepted to Ap

    The Spectral Aerosol Extinction Monitoring System (SǼMS): setup, observational products, and comparisons

    Get PDF
    The Spectral Aerosol Extinction Monitoring System (SÇMS) is presented that allows us to continuously measure the spectral extinction coefficient of atmospheric aerosol particles along an approximately 2.7 km long optical path at 30–50 m height above ground in Leipzig (51.3° N, 12.4° E), Germany. The fully automated instrument measures the ambient aerosol extinction coefficients from 300 to 1000 nm. The main goal of (SÇMS) observations are long-term studies of the relationship between particle extinction and relative humidity from below 40% to almost 100%. The setup is presented and observations (a case study and statistical results for 2009) are discussed in terms of time series of 550 nm particle optical depth, Ångström exponent, and particle size distribution retrieved from the spectrally resolved extinction. The SǼMS measurements are compared with simultaneously performed EARLINET (European Aerosol Research Lidar Network) lidar, AERONET (Aerosol Robotic Network) sun photometer, and in situ aerosol observations of particle size distribution and related extinction coefficients on the roof of our institute. Consistency between the different measurements is found, which corroborates the quality of the SǼMS observations. Statistical results of a period of 1 yr (2009) show mode extinction values of 0.09 km−1 (SÇMS), 0.075 km−1 (AERONET), and 0.03 km−1 (in situ). Ångström exponents for this period are 0.19 (390–880 nm,(SÇMS) and 1.55 (440–870 nm, AERONET)
    • …
    corecore