991 research outputs found
The spherical probe electric field and wave experiment
The experiment is designed to measure the electric field and density fluctuations with sampling rates up to 40,000 samples/sec. The description includes Langmuir sweeps that can be made to determine the electron density and temperature, the study of nonlinear processes that result in acceleration of plasma, and the analysis of large scale phenomena where all four spacecraft are needed
The meaning of life in a developing universe
The evolution of life on Earth has produced an organism that is beginning to model and understand its own evolution and the possible future evolution of life in the universe. These models and associated evidence show that evolution on Earth has a trajectory. The scale over which living processes are organized cooperatively has increased progressively, as has its evolvability. Recent theoretical advances raise the possibility that this trajectory is itself part of a wider developmental process. According to these theories, the developmental process has been shaped by a larger evolutionary process that involves the reproduction of universes. This evolutionary process has tuned the key parameters of the universe to increase the likelihood that life will emerge and develop to produce outcomes that are successful in the larger process (e.g. a key outcome may be to produce life and intelligence that intentionally reproduces the universe and tunes the parameters of ‘offspring’ universes). Theory suggests that when life emerges on a planet, it moves along this trajectory of its own accord. However, at a particular point evolution will continue to advance only if organisms emerge that decide to advance the evolutionary process intentionally. The organisms must be prepared to make this commitment even though the ultimate nature and destination of the process is uncertain, and may forever remain unknown. Organisms that complete this transition to intentional evolution will drive the further development of life and intelligence in the universe. Humanity’s increasing understanding of the evolution of life in the universe is rapidly bringing it to the threshold of this major evolutionary transition
Responsibility and Human Enhancement
The debate on human enhancement (HE), i.e. intentional effort to improve individuals\u2019 performance with the help of technical or biomedical interventions, has mainly centered on contrasting characterizations about either its moral legitimacy or technical plausibility, reaching an impasse. Looking for a way out of this stalemate, this collection of articles does not formulate prior standards to assess the desirability or legitimacy of enhancement, but explores some possible features for its responsible governance. Based on these assessments, the articles suggest possible approaches to systems design, regulation, and public engagement which can create conditions that allow for the the assumption and assignment of responsibility for HE and its ethical and social implications
A trait-based framework for seagrass ecology: Trends and prospects
In the last three decades, quantitative approaches that rely on organism traits instead of taxonomy have advanced different fields of ecological research through establishing the mechanistic links between environmental drivers, functional traits, and ecosystem functions. A research subfield where trait-based approaches have been frequently used but poorly synthesized is the ecology of seagrasses; marine angiosperms that colonized the ocean 100M YA and today make up productive yet threatened coastal ecosystems globally. Here, we compiled a comprehensive trait-based response-effect framework (TBF) which builds on previous concepts and ideas, including the use of traits for the study of community assembly processes, from dispersal and response to abiotic and biotic factors, to ecosystem function and service provision. We then apply this framework to the global seagrass literature, using a systematic review to identify the strengths, gaps, and opportunities of the field. Seagrass trait research has mostly focused on the effect of environmental drivers on traits, i.e., “environmental filtering” (72%), whereas links between traits and functions are less common (26.9%). Despite the richness of trait-based data available, concepts related to TBFs are rare in the seagrass literature (15% of studies), including the relative importance of neutral and niche assembly processes, or the influence of trait dominance or complementarity in ecosystem function provision. These knowledge gaps indicate ample potential for further research, highlighting the need to understand the links between the unique traits of seagrasses and the ecosystem services they provide
The Mathematical Universe
I explore physics implications of the External Reality Hypothesis (ERH) that
there exists an external physical reality completely independent of us humans.
I argue that with a sufficiently broad definition of mathematics, it implies
the Mathematical Universe Hypothesis (MUH) that our physical world is an
abstract mathematical structure. I discuss various implications of the ERH and
MUH, ranging from standard physics topics like symmetries, irreducible
representations, units, free parameters, randomness and initial conditions to
broader issues like consciousness, parallel universes and Godel incompleteness.
I hypothesize that only computable and decidable (in Godel's sense) structures
exist, which alleviates the cosmological measure problem and help explain why
our physical laws appear so simple. I also comment on the intimate relation
between mathematical structures, computations, simulations and physical
systems.Comment: Replaced to match accepted Found. Phys. version, 31 pages, 5 figs;
more details at http://space.mit.edu/home/tegmark/toe.htm
?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH
Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA
Artificial Stupidity
Public debate about AI is dominated by Frankenstein Syndrome, the fear that AI will become superhuman and escape human control. Although superintelligence is certainly a possibility, the interest it excites can distract the public from a more imminent concern: the rise of Artificial Stupidity (AS). This article discusses the roots of Frankenstein Syndrome in Mary Shelley’s famous novel of 1818. It then provides a philosophical framework for analysing the stupidity of artificial agents, demonstrating that modern intelligent systems can be seen to suffer from ‘stupidity of judgement’. Finally it identifies an alternative literary tradition that exposes the perils and benefits of AS. In the writings of Edmund Spenser, Jonathan Swift and E.T.A. Hoffmann, ASs replace, enslave or delude their human users. More optimistically, Joseph Furphy and Laurence Sterne imagine ASs that can serve human intellect as maps or as pipes. These writers provide a strong counternarrative to the myths that currently drive the AI debate. They identify ways in which even stupid artificial agents can evade human control, for instance by appealing to stereotypes or distancing us from reality. And they underscore the continuing importance of the literary imagination in an increasingly automated society
Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein
Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV
Physician Attitudes towards Pharmacological Cognitive Enhancement: Safety Concerns Are Paramount
The ethical dimensions of pharmacological cognitive enhancement have been widely discussed in academic circles and the popular media, but missing from the conversation have been the perspectives of physicians - key decision makers in the adoption of new technologies into medical practice. We queried primary care physicians in major urban centers in Canada and the United States with the aim of understanding their attitudes towards cognitive enhancement. Our primary hypothesis was that physicians would be more comfortable prescribing cognitive enhancers to older patients than to young adults. Physicians were presented with a hypothetical pharmaceutical cognitive enhancer that had been approved by the regulatory authorities for use in healthy adults, and was characterized as being safe, effective, and without significant adverse side effects. Respondents overwhelmingly reported increasing comfort with prescribing cognitive enhancers as the patient age increased from 25 to 65. When asked about their comfort with prescribing extant drugs that might be considered enhancements (sildenafil, modafinil, and methylphenidate) or our hypothetical cognitive enhancer to a normal, healthy 40 year old, physicians were more comfortable prescribing sildenafil than any of the other three agents. When queried as to the reasons they answered as they did, the most prominent concerns physicians expressed were issues of safety that were not offset by the benefit afforded the individual, even in the face of explicit safety claims. Moreover, many physicians indicated that they viewed safety claims with considerable skepticism. It has become routine for safety to be raised and summarily dismissed as an issue in the debate over pharmacological cognitive enhancement; the observation that physicians were so skeptical in the face of explicit safety claims suggests that such a conclusion may be premature. Thus, physician attitudes suggest that greater weight be placed upon the balance between safety and benefit in consideration of pharmacological cognitive enhancement
Householders’ Mental Models of Domestic Energy Consumption: Using a Sort-And-Cluster Method to Identify Shared Concepts of Appliance Similarity
If in-home displays and other interventions are to successfully influence people's energy consumption, they need to communicate about energy in terms that make sense to users. Here we explore householders' perceptions of energy consumption, using a novel combination of card-sorting and clustering to reveal shared patterns in the way people think about domestic energy consumption. The data suggest that, when participants were asked to group appliances which they felt naturally 'went together', there are relatively few shared ideas about which appliances are conceptually related. To the extent participants agreed on which appliances belonged together, these groupings were based on activities (e.g., entertainment) and location within the home (e.g., kitchen); energy consumption was not an important factor in people's categorisations. This suggests messages about behaviour change aimed at reducing energy consumption might better be tied to social practices than to consumption itself
- …