58 research outputs found

    Nitrous Oxide and Methane Dynamics in a Coral Reef Lagoon Driven by Pore Water Exchange: Insights from Automated Highā€Frequency Observations

    Get PDF
    Automated cavity ring down spectroscopy was used to make continuous measurements of dissolved methane, nitrous oxide, and carbon dioxide in a coral reef lagoon for 2ā€‰weeks (Heron Island, Great Barrier Reef). Radon (222Rn) was used to trace the influence of tidally driven pore water exchange on greenhouse gas dynamics. Clear tidal variation was observed for CH4, which correlated to 222Rn in lagoon waters. N2O correlated to 222Rn during the day only, which appears to be a response to coupled nitrificationā€denitrification in oxic sediments, fueled by nitrate derived from bird guano. The lagoon was a net source of CH4 and N2O to the atmosphere and a sink for atmospheric CO2. The estimated pore waterā€derived CH4 and N2O fluxes were 3.2ā€fold and 24.0ā€fold greater than the fluxes to the atmosphere. Overall, pore water and/or groundwater exchange were the only important sources of CH4 and major controls of N2O in the coral reef lagoon

    Drivers of pCO2 Variability in Two Contrasting Coral Reef Lagoons: The Influence of Submarine Groundwater Discharge

    Get PDF
    The impact of groundwater on pCO2 variability was assessed in two coral reef lagoons with distinct drivers of submarine groundwater discharge (SGD). Diel variability of pCO2 in the two ecosystems was explained by a combination of biological drivers and SGD inputs. In Rarotonga, a South Pacific volcanic island, 222Rnā€derived SGD was driven primarily by a steep terrestrial hydraulic gradient, and the water column was influenced by the high pCO2 (5501 Āµatm) of the fresh groundwater. In Heron Island, a Great Barrier Reef coral cay, SGD was dominated by seawater recirculation through the sediments (i.e., tidal pumping), and pCO2 was mainly impacted through the stimulation of biological processes. The Rarotonga water column had a higher average pCO2 (549 Āµatm) than Heron Island (471 Āµatm). However, pCO2 exhibited a greater diel range in Heron Island (778 Āµatm) than in Rarotonga (507 Āµatm). The Rarotonga water column received 29.0ā€‰Ā±ā€‰8.2 mmol freeā€CO2 māˆ’2 dāˆ’1 from SGD, while the Heron Island water column received 12.1ā€‰Ā±ā€‰4.2 mmol freeā€CO2 māˆ’2 dāˆ’1. Over the course of this study, both systems were sources of CO2 to the atmosphere with SGDā€derived freeā€CO2 most likely contributing a large portion to the airā€sea CO2 flux. Studies measuring the carbon chemistry of coral reefs (e.g., metabolism and calcification rates) may need to consider the effects of groundwater inputs on water column carbonate chemistry. Local drivers of coral reef carbonate chemistry such as SGD may offer more approachable management solutions to mitigating the effects of ocean acidification on coral reefs

    Validation of Landsat 8 high resolution Sea Surface Temperature using surfers

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record.Nearshore coastal waters are highly dynamic in both space and time. They can be difficult to sample using conventional methods due to their shallow depth, tidal variability, and the presence of strong currents and breaking waves. High resolution satellite sensors can be used to provide synoptic views of Surface Temperature (ST), but the performance of such ST products in the nearshore zone is poorly understood. Close to the shoreline, the ST pixels can be influenced by mixed composition of water and land, as a result of the sensorā€™s spatial resolution. This can cause thermal adjacency effects due to the highly different diurnal temperature cycles of water bodies and land. Previously, temperature data collected during surfing sessions has been proposed for validation of moderate resolution (1 km pixel size) satellite ST products. In this paper we use surfing temperature data to validate three high resolution (100 m resampled to 30 m pixel size) ST products derived from the Thermal InfraRed Sensor (TIRS) on board Landsat 8 (L8). ST was derived from Collection 1 and 2 Level 1 data (C1L1 and C2L1) using the Thermal Atmospheric Correction Tool (TACT), and was obtained from the standard Collection 2 Level 2 product (USGS C2L2). This study represents one of the first evaluations of the new C2 products, both L1 and L2, released by USGS at the end of 2020. Using automated matchup and image quality control, 88 matchups between L8/TIRS and surfers were identified, distributed across the NorthWestern semihemisphere. The unbiased Root Mean Squared Difference (uRMSD) between satellite and in situ measurements was generally < 2 K, with warm biases (Mean Average Difference, MAD) of 1.7 K (USGS C2L2), 1.3 K (TACT C1L1) and 0.8 K (TACT C2L1). Large interquartile ranges of ST in 5 Ɨ 5 satellite pixels around the matchup location were found for several images, especially for the summer matchups around the Californian coast. By filtering on target stability the number of matchups reduced to 31, which halved the uRMSD across the three methods (to around 1.1K), MAD were much lower, i.e. 1.1 K (USGS C2L2), 0.6 K (TACT C1L1), and 0.2 K (TACT C2L1). The larger biases of the C2L2 product compared to TACT C2L1 are caused as a result of: (1) a lower emissivity value for water targets used in USGS C2L2, and (2) differences in atmospheric parameter retrieval, mainly from differences in upwelling atmospheric radiance and lower atmospheric transmittance retrieved by USGS C2L2. Additionally, tiling artefacts are present in the C2L2 product, which originate from a coarser atmospheric correction process. Overall, the L8/TIRS derived ST product compares well with in situ measurements made while surfing, and we found the best performing ST product for nearshore coastal waters to be the Collection 2 Level 1 data processed with TACT.UK Research and InnovationFederal Belgian Science Policy Office (BELSPO)Lost Bird Foundatio

    Comparison of Two Methods for Measuring Sea Surface Temperature When Surfing

    Get PDF
    Nearshore coastal waters are among the most dynamic regions on the planet and difficult to sample from conventional oceanographic platforms. It has been suggested that environmental sampling of the nearshore could be improved by mobilising vast numbers of citizens who partake in marine recreational sports, like surfing. In this paper, we compared two approaches for measuring sea surface temperature (SST), an Essential Climate Variable, when surfing. One technique involved attaching a commercially-available miniature temperature logger (Onset UTBI-001 TidbiT v2) to the leash of the surfboard (tether connecting surfer and surfboard) and the second, attaching a surfboard fin (Smartfin) that contained an environmental sensor package. Between July 2017 and July 2018, 148 surfing sessions took place, 90 in the southwest UK and 58 in San Diego, California, USA. During these sessions, both Smartfin and leash sensors were deployed simultaneously. On the leash, two TidbiT v2 sensors were attached, one with (denoted LP) and one without (denoted LU) a protective boot, designed to shield the sensor from sunlight. The median temperature from each technique, during each surfing session, was extracted and compared along with independent water temperature data from a nearby pier and benthic logger, and matched with photosynthetically available radiation (PAR) data from satellite observations (used as a proxy for solar radiation during each surf). Results indicate a mean difference ( Ī“ ) of 0.13 Ā°C and mean absolute difference ( Ļµ ) of 0.14 Ā°C between Smartfin and LU, and a Ī“ of 0.04 Ā°C and an Ļµ of 0.06 Ā°C between Smartfin and LP. For UK measurements, we observed better agreement between methods ( Ī“=0.07 Ā°C and Ļµ=0.08 Ā°C between Smartfin and LU, and Ī“=0.00 Ā°C and Ļµ=0.03 Ā°C between Smartfin and LP) when compared with measurements in San Diego ( Ī“=0.22 Ā°C and Ļµ=0.23 Ā°C between Smartfin and LU, and Ī“=0.08 Ā°C and Ļµ=0.11 Ā°C between Smartfin and LP). Surfing SST data were found to agree well, in general, with independent temperature data from a nearby pier and benthic logger. Differences in SST between leash and Smartfin were found to correlate with PAR, both for the unprotected (LU) and protected (LP) TidbiT v2 sensors, explaining the regional differences in the comparison (PAR generally higher during US surfing sessions than UK sessions). Considering that the Smartfin is sheltered from ambient light by the surfboard, unlike the leash, results indicate the leash TidbiT v2 sensors warm with exposure to sunlight biasing the SST data positively, a result consistent with published tests on similar sensors in shallow waters. We matched all LU data collected prior to this study with satellite PAR products and corrected for solar heating. Results highlight the need to design temperature sensor packages that minimise exposure from solar heating when towed in the surface ocean

    Expanding Aquatic Observations through Recreation

    Get PDF
    Accurate observations of the Earth system are required to understand how our planet is changing and to help manage its resources. The aquatic environmentā€”including lakes, rivers, wetlands, estuaries, coastal and open oceansā€”is a fundamental component of the Earth system controlling key physical, biological, and chemical processes that allow life to flourish. Yet, this environment is critically undersampled in both time and space. New and cost-effective sampling solutions are urgently needed. Here, we highlight the potential to improve aquatic sampling by tapping into recreation. We draw attention to the vast number of participants that engage in aquatic recreational activities and argue, based on current technological developments and recent research, that the time is right to employ recreational citizens to improve large-scale aquatic sampling efforts. We discuss the challenges that need to be addressed for this strategy to be successful (e.g., sensor integration, data quality, and citizen motivation), the steps needed to realize its potential, and additional societal benefits that arise when engaging citizens in scientific sampling

    Porewater Carbonate Chemistry Dynamics in a Temperate and a Subtropical Seagrass System

    Get PDF
    Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (Zostera marina) and unvegetated biomes (0ā€“16 cm) in Mission Bay, San Diego, USA and a vegetated system (Thallasia testudinium) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings

    Expanding aquatic observations through recreation

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordAccurate observations of the Earth system are required to understand how our planet is changing and to help manage its resources. The aquatic environment-including lakes, rivers, wetlands, estuaries, coastal and open oceans-is a fundamental component of the Earth system controlling key physical, biological, and chemical processes that allow life to flourish. Yet, this environment is critically undersampled in both time and space. New and cost-effective sampling solutions are urgently needed. Here, we highlight the potential to improve aquatic sampling by tapping into recreation. We draw attention to the vast number of participants that engage in aquatic recreational activities and argue, based on current technological developments and recent research, that the time is right to employ recreational citizens to improve large-scale aquatic sampling efforts. We discuss the challenges that need to be addressed for this strategy to be successful (e.g., sensor integration, data quality, and citizen motivation), the steps needed to realize its potential, and additional societal benefits that arise when engaging citizens in scientific sampling.UK National Centre for Earth ObservationSmartfin/Lostbird FoundationDefr

    Comparison of a Smartfin with an Infrared Sea Surface Temperature Radiometer in the Atlantic Ocean

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordThe accuracy and precision of satellite sea surface temperature (SST) products in nearshore coastal waters are not well known, owing to a lack of in-situ data available for validation. It has been suggested that recreational watersports enthusiasts, who immerse themselves in nearshore coastal waters, be used as a platform to improve sampling and fill this gap. One tool that has been used worldwide by surfers is the Smartfin, which contains a temperature sensor integrated into a surfboard fin. If tools such as the Smartfin are to be considered for satellite validation work, they must be carefully evaluated against state-of-the-art techniques to quantify data quality. In this study, we developed a Simple Oceanographic floating Device (SOD), designed to float on the ocean surface, and deployed it during the 28th Atlantic Meridional Transect (AMT28) research cruise (September and October 2018). We attached a Smartfin to the underside of the SOD, which measured temperature at a depth of āˆ¼0.1 m, in a manner consistent with how it collects data on a surfboard. Additional temperature sensors (an iButton and a TidbiT v2), shaded and positioned a depth of āˆ¼1 m, were also attached to the SOD at some of the stations. Four laboratory comparisons of the SOD sensors (Smartfin, iButton and TidbiT v2) with an accurate temperature probe (Ā±0.0043 K over a range of 273.15 to 323.15 K) were also conducted during the AMT28 voyage, over a temperature range of 290ā€“309 K in a recirculating water bath. Mean differences (Ī“), referenced to the temperature probe, were removed from the iButton (Ī“=0.292 K) and a TidbiT v2 sensors (Ī“=0.089 K), but not from the Smartfin, as it was found to be in excellent agreement with the temperature probe (Ī“=0.005 K). The SOD was deployed for 20 min periods at 62 stations (predawn and noon) spanning 100 degrees latitude and a gradient in SST of 19 K. Simultaneous measurements of skin SST were collected using an Infrared Sea surface temperature Autonomous Radiometer (ISAR), a state-of-the-art instrument used for satellite validation. Additionally, we extracted simultaneous SST measurements, collected at slightly different depths, from an underway conductivity, temperature and depth (CTD) system. Over all 62 stations, the mean difference (Ī“) and mean absolute difference (Ļµ) between Smartfin and the underway CTD were āˆ’0.01 and 0.06 K respectively (similar results obtained from comparisons between Smartfin and iButton and Smartfin and TidbiT v2), and the Ī“ and Ļµ between Smartfin and ISAR were 0.09 and 0.12 K respectively. In both comparisons, statistics varied between noon and predawn stations, with differences related to environmental variability (wind speed and sea-air temperature differences) and depth of sampling. Our results add confidence to the use of Smartfin as a citizen science tool for evaluating satellite SST data, and data collected using the SOD and ISAR were shown to be useful for quantifying near-surface temperature gradients.European Space AgencyLost Bird Projec

    Seagrass can mitigate negative ocean acidification effects on calcifying algae

    Get PDF
    The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the CoordenaĆ§Ć£o de AperfeiƧoamento de Pessoas de NĆ­vel Superior (CAPES) for Masters funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm structure and experimental assistance.info:eu-repo/semantics/publishedVersio

    Light-driven dynamics between calcification and production in functionally diverse coral reef calcifiers

    Get PDF
    Coral reef metabolism underpins ecosystem function and is defined by the processes of photosynthesis, respiration, calcification, and calcium carbonate dissolution. However, the relationships between these physiological processes at the organismal level and their interactions with light remain unclear. We examined metabolic rates across a range of photosynthesising calcifiers in the Caribbean: the scleractinian corals Acropora cervicornis, Orbicella faveolata, Porites astreoides, and Siderastrea siderea, and crustose coralline algae (CCA) under varying natural light conditions. Net photosynthesis and calcification showed a parabolic response to light across all species, with differences among massive corals, branching corals, and CCA that reflect their relative functional roles on the reef. At night, all organisms were net respiring, and most were net calcifying, although some incubations demonstrated instances of net calcium carbonate (CaCO3) dissolution. Peak metabolic rates at light-saturation (maximum photosynthesis and calcification) and average dark rates (respiration and dark calcification) were positively correlated across species. Interspecies relationships among photosynthesis, respiration, and calcification indicate that calcification rates are linked to energy production at the organismal level in calcifying reef organisms. The species-specific ratios of net calcification to photosynthesis varied with light over a diurnal cycle. The dynamic nature of calcification/photosynthesis ratios over a diurnal cycle questions the use of this metric as an indicator for reef function and health at the ecosystem scale unless temporal variability is accounted for, and a new metric is proposed. The complex light-driven dynamics of metabolic processes in coral reef organisms indicate that a more comprehensive understanding of reef metabolism is needed for predicting the future impacts of global change
    • ā€¦
    corecore