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Nitrous oxide and methane dynamics in a coral reef
lagoon driven by pore water exchange: Insights
from automated high-frequency observations
Chiara O’Reilly1,2, Isaac R. Santos1,2, Tyler Cyronak2, Ashly McMahon1,2, and Damien T. Maher2

1National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs
Harbour, New South Wales, Australia, 2Centre for Coastal Biogeochemistry, School of Environment, Science and
Engineering, Southern Cross University, Lismore, New South Wales, Australia

Abstract Automated cavity ring down spectroscopy was used to make continuous measurements of
dissolved methane, nitrous oxide, and carbon dioxide in a coral reef lagoon for 2weeks (Heron Island, Great
Barrier Reef). Radon (222Rn) was used to trace the influence of tidally driven pore water exchange on greenhouse
gas dynamics. Clear tidal variation was observed for CH4, which correlated to 222Rn in lagoon waters. N2O
correlated to 222Rn during the day only, which appears to be a response to coupled nitrification-denitrification in
oxic sediments, fueled by nitrate derived from bird guano. The lagoon was a net source of CH4 and N2O to the
atmosphere and a sink for atmospheric CO2. The estimated pore water-derived CH4 and N2O fluxes were 3.2-fold
and 24.0-fold greater than the fluxes to the atmosphere. Overall, pore water and/or groundwater exchange were
the only important sources of CH4 and major controls of N2O in the coral reef lagoon.

1. Introduction

While coral reef carbon dioxide dynamics have been relatively well studied [Cyronak et al., 2014b], less
attention has been given to the dynamics and drivers of other major greenhouse gases such as methane
and nitrous oxide. Most previous studies of greenhouse gases other than carbon dioxide focused on
methane diagenesis in coral reef pore waters [Falter and Sansone, 2000]. Coral reef groundwater and
shallow pore water conditions (i.e., low oxygen, high carbon, abundant microbial life, and effective
flushing) [Cyronak et al., 2014a; Tribble et al., 1990; Wild et al., 2006] may be ideal for the production and
release of greenhouse gases to surface waters and the atmosphere.

Submarine groundwater discharge (SGD) and pore water exchange have been suggested to be a major
source of nutrients to some coral reef ecosystems [Paytan et al., 2006; Tait et al., 2014]. SGD refers to “any
and all flow of water on continental margins from the seabed to the coastal ocean, regardless of fluid
composition or driving force” [Moore, 2010]. Groundwater is synonymous with pore water in saturated
sediments. Therefore, pore water exchange falls under this modern definition of SGD. SGD can be tidally
driven and related to seawater recirculation into beach sediments (i.e., tidal pumping), which may be
particularly important in coral reef lagoons surrounding islands with permeable sediments [Santos et al.,
2010]. A number of other physical processes including wave pumping, current-topography interactions,
and biorrigation may drive pore water exchange, but these small-scale processes are unlikely to be
captured by geochemical tracers such as radon. Pore water exchange may drive marine particulate organic
matter (i.e., phytoplankton and coral mucus) into sediments while leaching out microbial by-products
including greenhouse gases [Sansone, 1993].

Denitrification in sediments and nitrification in the water column are the primary contributors of widespread
N2O supersaturation in coastal waters [Naqvi et al., 2010]. Both nitrification and denitrification have been
observed in coral reefs [O’Neil and Capone, 2008] with some of the highest worldwide sediment
denitrification rates measured in permeable coral reef sands subject to pore water advection [Santos et al.,
2012]. These high rates of denitrification may be coupled to N2O production in sediments. Biotic CH4 is
usually produced under anoxic conditions as a product of acetate fermentation or carbon dioxide
reduction. In marine sediments, CH4 is usually produced after alternative electron acceptors have been
exhausted. Therefore, CH4 generally occurs where sulfate is depleted even though methane has been
observed in coral reef pore waters in the presence of sulfate [Falter and Sansone, 2000].
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Recent studies have shown that groundwater and pore water can influence CO2 dynamics in coral reef
lagoons [Cyronak et al., 2014a] and coastal groundwater often has high concentrations of CO2, N2O, and
CH4 [Porubsky et al., 2014]. Here we take advantage of automated, high-precision instrumentation (i.e.,
cavity ring down spectroscopy) to perform time series observations of dissolved greenhouse gases in a
coral reef lagoon. While focus is given to CH4 and N2O, carbon dioxide observations are also reported. We
hypothesize that the lagoon waters will have variable CH4 and N2O concentrations influenced by SGD or
pore water exchange. We use a well-established radon (222Rn; t1/2 = 3.84 days) approach to quantify pore
water exchange and compare porewater-derived fluxes to greenhouse gas fluxes at the water-air interface.
The noble gas radon is a natural tracer for any water that remains in contact with sediments for at least
several hours or a few days.

2. Material and Methods

We have performed lagoon water and groundwater observations to assess whether tidal pumping drives
greenhouse gas dynamics in coral reef waters surrounding Heron Island (23°27′S, 151°55′E). Heron Island is
a coral cay located in the Capricorn Group of islands in the southern end of the Great Barrier Reef ~80 km
from the Australian mainland. The island is 800m long, ~300m wide, and 3m above sea level. Heron
Island is surrounded by a lagoonal coral reef, which covers an area of ~27 km2 with an average depth of
1.7m [McMahon et al., 2013]. The sediments consist primarily of calcareous skeletal matter from reef
organisms. The sediments exhibit high permeability, allowing seawater to recirculate through the island
with the tides [Santos et al., 2010]. As with many coral cays, Heron Island is subjected to high densities of
seabirds that drive high concentrations of nitrates in groundwater in an otherwise nutrient-poor
environment [Schmidt et al., 2004].

A 2week continuous time series in the Heron Reef lagoon was conducted in May 2014 to cover a spring-neap
tidal cycle. Seawater was pumped from the lagoon at a site located about 10m seaward of the low tide mark
in front of the Heron Island Research Station into a shower head gas equilibration device (GED) at a rate of
about 3 L/min [Maher et al., 2013]. A closed air loop was established between the GED and gas analyzers.
Two automated, high-precision cavity ring down spectroscopy (CRDS) systems were used for CO2, CH4,
and N2O analysis (Picarro G2308 and Picarro G2201-I). These systems were connected in line and
calibrated before and after field experiments by running standard gases (CO2 306 ppm and 2017 ppm, CH4

3 ppm and 200 ppm, and N2O 0.35 ppm). No drift was detected after the field experiments. 222Rn was
analyzed using a commercial RAD-7 (Durridge Co., Inc.) [Burnett et al., 2001]. The general approach and
protocols required for converting measurements in the GED to dissolved gas concentrations or saturations
are described elsewhere [Maher et al., 2013, and references therein]. All the dissolved greenhouse gas
values are reported as a percent saturation at in situ temperature and salinities. A calibrated Hydrolab
DS5X was also deployed at the site to measure photosynthetically active radiation (PAR), salinity (open cell
graphite electrode; 0.5% accuracy), temperature and dissolved oxygen (DO; Hach Luminescent dissolved
oxygen; <0.2mg L�1 accuracy). Wind speeds and rainfall information were obtained from the Integrated
Marine Observing System (http://weather.aims.gov.au/).

Groundwater samples were collected from six sites previously sampled for radon and dissolved nutrients
[Santos et al., 2010; Schmidt et al., 2004]. A 24 h groundwater time series (one sample every 2 h) was
conducted from a 6.5m well located by the Heron Island Research Station (23°26′31″S, 151°54′46″E).
Groundwater samples were collected using a peristaltic pump after purging at least three well volumes.
Discrete samples of dissolved gas concentrations in the groundwater were measured using a headspace
method within 1 h of sampling [Gatland et al., 2014, and references therein].

Greenhouse gas exchange rates were calculated at the sediment-water (i.e., pore water derived) and water-
air (i.e., atmospheric exchange) interfaces. The pore water exchange rates were estimated from a nonsteady
state radonmass balance that was previously applied to the same location [Cyronak et al., 2014a; Santos et al.,
2010]. The radon-derived pore water exchange rates (in units of cmd�1) were then multiplied by the average
greenhouse gas concentration in all groundwater and pore water samples. Our radon observations in lagoon
surface waters reflect a combination of lagoon pore water and island groundwater inputs. It is not possible to
quantitatively separate these two sources of radon with the data available. For simplicity, we use the term
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“pore water exchange” and recognize
that some authors would refer to it as
“submarine groundwater discharge.”

For water-air flux calculations, we relied
on the concentration gradient between
the water and air, and gas transfer
velocities calculated as a function of
wind speeds using four different
empirical models described elsewhere
[Borges et al., 2004; Ho et al., 2006;
Raymond and Cole, 2001; Wanninkhof,
1992]. Solubility coefficients for N2O
[Weiss and Price, 1980], CO2 [Weiss, 1974],
and CH4 [Yamamoto et al., 1976] were
calculated from temperature and salinity.
The atmospheric concentrations were
assumed to be constant (CO2 400ppm,
CH4 1.8 ppm, and N2O 0.326 ppm).
Positive fluxes indicate gas emissions
from the lagoon to the atmosphere
(outgassing), while negative values
indicate fluxes from the atmosphere
to the lagoon (uptake).

3. Results

The lagoon observations were charac-
terized by stormy and rainy conditions
during the first half of the time series
(Figure 1). However, the second half
was characterized by calmer weather,
with winds ranging from 0.2 to 8.4ms�1

and a maximum of 11.6mmd�1 of
precipitation. Salinity remained within
a narrow range of 33.3 to 34.7 and
temperature ranged between 20.8 and
27.5°C. Dissolved oxygen exhibited
normal diurnal variation for coral reefs,

ranging between 56 and 218% and following the opposite trends of carbon dioxide which ranged from 41
to 180% saturation.

The concentrations of 222Rn ranged between 124 and 1873 disintegrations per minute (dpm)m�3 and
followed a clear tidal pattern. Methane varied between 106 and 218% saturation and followed tidal
patterns similar to radon with higher concentrations during low tide. Nitrous oxide was generally
oversaturated with an overall range of 94–130%. The strong winds during the first half of the time series
resulted in a reduction in maximum concentrations and relatively narrower diel ranges for all the gases
(Figure 1). CO2 and N2O usually followed diurnal patterns.

The groundwater observations revealed high and variable radon and greenhouse gas values (Table 1). The
average CO2, CH4, and N2O saturation values in groundwaters were 7, 27, and 11 times higher than the
averages observed in the lagoon surface water, implying that groundwater can be a source of greenhouse
gases to the coral reef lagoon.

A nonsteady state radon mass balance resulted in average pore water exchange rates of 19.4 ± 1.8 cmd�1 (or
194 ± 18 L/m�2/d�1 as used by some authors; uncertainties refer to the 99% confidence interval of the natural

Figure 1. Results of the 12 day continuous time series conducted in the
Heron Island lagoon. Vertical grey bars highlight nighttime observations.
PAR stands for photosynthetically active radiation. Tidal heights are shown
in blue on the right axis.
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variability of the radon mass balance model; n=305h) using assumptions and an approach described elsewhere
[Santos et al., 2010, and references therein]. When multiplied by the average greenhouse gas concentrations
in Heron Island groundwaters and pore waters (Table 1), we obtain average pore water-derived fluxes of
10.8 ± 8.4 and 16.2 ± 6.2 μmolm�2 d�1 for CH4 and N2O, respectively. The pore water-derived CO2 fluxes
were 24.6 ± 2.3mmolm�2 d�1.

The lagoon was usually a source of both CH4 and N2O to the atmosphere (Figure 2). The water-air fluxes
ranged up to fourfold depending on the choice of the gas transfer velocity model employed (Table 2).
Using an average from the four gas transfer velocity models (Table 2), the estimated CH4 and N2O fluxes at
the sediment-water interface are 3.2 and 24.1 times higher than the water-air fluxes. The highest lagoon
outgassing rates were recorded during days with strongest winds and lowest water temperatures in spite
of lower CH4 and N2O values. Overall, the lagoon primarily acted as a sink for atmospheric CO2 due to
uptake during the initial stormy conditions.

4. Discussion

High-frequency observations for 12days revealed
that both methane and nitrous oxide were
consistently supersaturated in the coral reef
waters surrounding Heron Island. As expected,
groundwater concentrations were much higher
than concentrations observed in lagoon waters,
resulting in net greenhouse gas fluxes from
groundwater to the coral reef lagoon. The
estimated fluxes of CH4 and N2O at the
sediment-water interface (i.e., pore water
exchange) were 1 order of magnitude greater
than the fluxes at the water-air interface
(Table 1). This implies that some pore water-
derived dissolved CH4 and N2O can be exported
to outside the lagoon, from where outgassing
would eventually occur. In addition, some
CH4 oxidation may have occurred within the
water column.

A correlation analysis provided contrasting
results for the three greenhouse gases
(Figure 3). Methane was significantly correlated
with radon both during the day and night.
Nitrous oxide was correlated with radon during

Table 1. Results of Groundwater and Pore Water Observationsa

Sample Site
Depth
(m)

222Rn
(dpm/m3) pH Salinity

Temperature
(°C)

DO
(%)

CH4
(%)

N2O
(%)

CO2
(%)

CH4
(nM)

N2O
(nM)

[CO2*]
(μM)

GWTS Research station 3.0 14,046 7.17 34.5 24.1 117 1227 1483 1979 25 101 236
GW1 Forest trail 7.6 89,166 7.29 29.2 25.6 84 1844 935 1022 38 63 120
GW 2 Forest trail 5.8 52,161 6.86 30.3 25.3 44 6667 933 1104 137 63 130
GW 3 Forest trail 13.9 89,559 7.27 30.1 25.4 85 2580 935 867 53 63 102
GW 4 Inland 7.6 5,904 7.28 19.3 24.8 23 1925 1740 1229 43 127 154
PW Lagoon 0.2 8,763 7.66 36.5 24.2 47 1844 ND 178 37 ND 21

Mean 6.3 56,600 7.26 30.0 24.9 67 2681 1205 1063 56 83 127
Standard deviation 4.7 37,748 0.26 6.0 0.6 35 1999 382 582 41 29 70
99% Confidence interval 3.7 39,695 0.27 6.3 0.7 37 2102 402 612 43 31 74

aThe greenhouse gas values are shown in % saturation units to allow easy comparison to surface waters and in molar units that were used to estimate pore
water-derived fluxes. Additional data about the wells can be found elsewhere [Santos et al., 2010; Schmidt et al., 2004]. ND, no data.

Figure 2. Instantaneous (red circles) and daily average (black
circles) air-water flux rates for CH4, CO2, and N2O during the
lagoon time series calculated using the model from Raymond
and Cole [2001]. Positive numbers indicate the lagoon as a
source, whereas negative numbers indicate a sink. The vertical
grey bars represent nighttime observations. The continuous
blue line (right axis) shows tidal heights.
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Table 2. Piston Velocities and Water-Air Fluxes of Greenhouse Gases Using Four Different Modelsa

CO2 CH4 N2O

Saturation (%) 93.0 ± 0.5 141.0 ± 0.5 103.0 ± 0.1

Gas Specific Piston Velocities (m d�1)
Raymond and Cole [2001] 8.3 ± 0.2 8.2 ± 0.2 8.0 ± 0.2
Borges et al. [2004] 4.7 ± 0.0 4.6 ± 0.0 4.5 ± 0.0
Ho et al. [2006] 3.2 ± 0.1 3.1 ± 0.1 3.1 ± 0.1
Wanninkhof [1992] 3.9 ± 0.1 3.8 ± 0.1 3.8 ± 0.1

Water-Air Fluxesb

Raymond and Cole [2001] �9.3 ± 0.7 5.2 ± 0.1 1.2 ± 0.0
Borges et al. [2004] �4.5 ± 0.3 3.7 ± 0.0 0.3 ± 0.1
Ho et al. [2006] �3.6 ± 0.2 2.2 ± 0.0 0.5 ± 0.0
Wanninkhof [1992] �4.4 ± 0.3 2.6 ± 0.1 0.6 ± 0.0
Average �5.4 ± 0.8 3.4 ± 0.1 0.7 ± 0.1

aUncertainties in the overall average water-air flux were estimated by propagating the uncertainties of the individual
models. Individual uncertainties refer to the 99% confidence interval of the natural variability.

bUnits of mmolm2 d�1 for CO2 and μmolm2 d�1 for CH4 and N2O.

Figure 3. Correlations between greenhouse gases and 222Rn (left) and DO (right). Open blue symbols and text represent
daytime, and closed black symbols and text represent nighttime.

Geophysical Research Letters 10.1002/2015GL063126
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the day but not during the night. Carbon dioxide was correlated with radon at night but not during the day,
similar to previous CO2 and 222Rn observations in Heron Island [Cyronak et al., 2014a]. Interestingly, both
methane and nitrous oxide had stronger correlations with radon than with dissolved oxygen. Considering that
DO can be seen as a tracer of photosynthesis and respiration and that radon is an unambiguous pore water
tracer in Heron Island (i.e., other radon sources such as dissolved 226Ra decay and diffusion are minor; see
Santos et al. [2010]), these observations support our original hypothesis that pore water exchange was the
major source of both methane and nitrous oxide to the lagoon.

The y axis intercept of the equation describing the CH4 versus 222Rn correlation (CH4 = 0.068222Rn+ 102;
combining day and night data from Figure 3) approaches 100% CH4 saturation. This implies that in the
absence of radon (i.e., no groundwater), methane would approach equilibrium with the atmosphere (i.e.,
100% saturation) and that methane sources other than groundwater were negligible. The groundwaters of
Heron Island were supersaturated with CH4 even though some oxygen was still present (average DO
saturation 66 ± 35%; Table 1) which presumably prevents methanogenesis [Naqvi et al., 2010]. Carbonate
sands are highly porous and have anoxic microenvironments that dramatically enhance the area available
for microbial growth [Kessler et al., 2014]. As a result, microbial activity within porous carbonate sand
grains can be orders of magnitude higher than in pore water surrounding the grains [Wild et al., 2006].
Anoxic microniches within sand grains may create intermittent conditions that are favorable for methane
production that can be effectively flushed out of sediments through pore water exchange [Falter and
Sansone, 2000].

Nitrous oxide hadmore complex dynamics thanmethane, showing significant correlations with radon during the
day only (Figure 3). The y axis intercept in the regression of N2O versus 222Rn (N2O=0.018222Rn+94; using
daytime data only) was less than 100% saturation. Hence, conditions of no or low groundwater discharge
(i.e., 222Rn approaching zero) may coincide with negative N2O fluxes (i.e., fluxes from the atmosphere to
the lagoon). Using the average groundwater radon concentration (56,600 dpmm�3) in the equation
describing the lagoon N2O versus 222Rn relationship above, the N2O saturation in groundwater should be
1113% if pore water exchange was the only source of N2O to the lagoon during the day. The observed
average groundwater N2O was similar at 1205 ± 382% (Table 1). This analysis demonstrates an internally
consistent data set that implies groundwater and/or pore water exchange is an important source of N2O
supersaturation within the Heron Island lagoon.

Why would pore water be a source of nitrous oxide to the lagoon during the day but not during the night? We
speculate that this is related to oxygen, nitrate, and ammonium availability in pore water and higher coupled
nitrification-denitrification during the day. Nitrification requires oxic conditions, and during nitrification N2O
is formed as a by-product as ammonium is oxidized to nitrate. Low nighttime DO (Figure 1) may prevent the
infiltration of oxygen into shallow sediments and slow nitrification and the related production of N2O. During
the day, deeper oxygen penetration into sediments [Werner et al., 2006] can create sharp oxygen gradients in
pore water and expand the area where coupled nitrification-denitrification can occur and enhance the
related production of N2O. As pore waters are effectively flushed out, sediment N2O would be released to
surface waters along with radon. The relatively high groundwater N2O is likely related to microniches
within carbonate sands as well as extremely high NO3

� in Heron Island groundwater due to accumulating
nitrogen leached from bird guano [Santos et al., 2010; Schmidt et al., 2004]. Therefore, we hypothesize that
the supply of N2O from island groundwater is enhanced by daytime nitrification in shallow lagoon pore
waters. The production of N2O can be further enhanced by denitrification producing larger amounts of
N2O in suboxic conditions (daytime) than under strictly anaerobic conditions (nighttime) [Laursen and
Seitzinger, 2004]. Additional specific experiments are needed to test these hypotheses.

Could coral reefs waters be major players in the oceanic CH4 and N2O budgets? By multiplying Heron Island
average water-air fluxes (Table 2) by the global coral reef area (about 600,000 km2), coral reefs could
contribute 0.0120 Tg yr�1 of CH4 and 0.0065 Tg yr�1 of N2O to the atmosphere. While we are unaware of
similar estimates in coral reefs, it is likely that our outgassing estimates are at the high end of the
spectrum because our lagoon observations were performed near the groundwater/pore water source (i.e.,
about 10m off the low tide mark) and include stormy conditions when outgassing rates were higher (see
first week of observations in Figure 2). Even if our results represent an overestimation of coral reef sources,
coral reefs would still be a minor component of marine CH4 and N2O budgets. The global ocean is thought
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to release between 11 and 18 Tg yr�1 of CH4 to the atmosphere [Bange et al., 1994] and about 6 Tg yr�1 of
N-N2O [Codispoti, 2010]. Our estimates also imply that coral reefs would release much lower amounts of
greenhouse gases than coastal waters. For example, European coastal waters (>0.3 Tg yr�1 of both N-N2O
and C-CH4) [Bange, 2006] alone may release at least 1 order of magnitude more than the estimated global
coral reef outgassing rates extrapolated from our study.

5. Conclusions

Automated time series observations revealed that the Heron Island coral reef lagoon was supersaturated in
both methane and nitrous oxide during 12 days of continuous observations. The lagoon was a net source of
CH4 and N2O to the atmosphere (average of 3.4 and 0.7μmolm�2 d�1, Table 2). If upscaled to the global coral
reef area, these outgassing rates would represent a minor global source of CH4 and N2O to the atmosphere.
Pore water exchange was a source of all three major greenhouse gases to Heron Island lagoon. Estimated
local fluxes at the sediment-water interface exceeded outgassing rates at the water-air interface. Overall,
pore water and/or groundwater exchange were the only important source of methane, a major control of
nitrous oxide during the day, and a minor driver of carbon dioxide dynamics in the Heron Island lagoon.
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