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Drivers of pCO2 variability in two contrasting coral
reef lagoons: The influence of submarine
groundwater discharge
Tyler Cyronak1, Isaac R. Santos1, Dirk V. Erler1, Damien T. Maher1, and Bradley D. Eyre1

1Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore,
New South Wales, Australia

Abstract The impact of groundwater on pCO2 variability was assessed in two coral reef lagoons with
distinct drivers of submarine groundwater discharge (SGD). Diel variability of pCO2 in the two ecosystems
was explained by a combination of biological drivers and SGD inputs. In Rarotonga, a South Pacific volcanic
island, 222Rn-derived SGDwas driven primarily by a steep terrestrial hydraulic gradient, and the water column
was influenced by the high pCO2 (5501 μatm) of the fresh groundwater. In Heron Island, a Great Barrier Reef
coral cay, SGD was dominated by seawater recirculation through the sediments (i.e., tidal pumping), and
pCO2 wasmainly impacted through the stimulation of biological processes. The Rarotonga water column had
a higher average pCO2 (549 μatm) than Heron Island (471 μatm). However, pCO2 exhibited a greater diel
range in Heron Island (778 μatm) than in Rarotonga (507 μatm). The Rarotonga water column received
29.0 ± 8.2 mmol free-CO2 m

�2 d�1 from SGD, while the Heron Island water column received 12.1 ± 4.2 mmol
free-CO2 m

�2 d�1. Over the course of this study, both systems were sources of CO2 to the atmosphere with
SGD-derived free-CO2 most likely contributing a large portion to the air-sea CO2 flux. Studies measuring the
carbon chemistry of coral reefs (e.g., metabolism and calcification rates) may need to consider the effects of
groundwater inputs on water column carbonate chemistry. Local drivers of coral reef carbonate chemistry
such as SGD may offer more approachable management solutions to mitigating the effects of ocean
acidification on coral reefs.

1. Introduction

Since the industrial revolution, oceans have absorbed approximately 30% of anthropogenically produced
CO2 from the atmosphere, resulting in an increase in oceanic pCO2 [Feely et al., 2004]. This increase in pCO2

changes the carbonate chemistry of seawater, reducing the pH in a process termed ocean acidification (OA)
[Doney et al., 2009]. This increase in pCO2 has been apparent in the open ocean, but has been difficult to

detect in coastal ecosystems, which can experience large pCO2 variability on diel and seasonal time scales
[Kayanne et al., 1995; Friedrich et al., 2012; Duarte et al., 2013]. High pCO2 has been shown to have deleterious
effects on coral health through a reduction in calcification rates attributed to decreases in seawater pH and
aragonite saturation state (ΩAr) [Leclercq et al., 2000, 2002; Langdon et al., 2003]. In order to properly address
how OA is likely to affect coral reef ecosystems, a detailed understanding of pCO2 variability and its
associated drivers is needed.

Previous studies have generally assessed coral reef pCO2 variability in terms of community metabolism
[Drupp et al., 2011; Gattuso et al., 1993, 1995; Frankignoulle et al., 1996], calcification [Shamberger et al.,
2011; Shaw et al., 2012], and air-sea CO2 fluxes [Kayanne et al., 1995; Bates, 2002; Massaro et al., 2012] and
may have overlooked important drivers of CO2 dynamics. In the early to mid-1990s, there were a number
of studies that measured pCO2 variability in coral reefs, mainly attempting to assess whether reefs were a
source or sink of CO2 to the atmosphere [Ware et al., 1992; Kayanne et al., 1995; Buddemeier, 1996]. Recent
interest in OA, however, has increased the demand for high-resolution pCO2 data sets from coral
reef ecosystems.

The diel variability of pCO2 in coral reefs is often attributed to their high benthic metabolic rates [Kayanne
et al., 1995]. Along with photosynthesis and respiration, calcification has been shown to alter the pCO2 of
coral reefs, as ~0.6mol of CO2 are released for each mole of calcium carbonate (CaCO3) produced
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[Frankignoulle et al., 1994]. In shallow coral reef lagoons and reefal flats, pCO2 can range from 77 to
1256 μatm over a diel cycle [Gray et al., 2012; Shaw et al., 2012]. There is also variability in pCO2 over
seasonal time scales, with lower values and narrower diel ranges usually found in the winter due to
temperature effects and reduced ecosystem metabolism [Bates, 2002; Kayanne et al., 2005; Gray et al.,
2012]. Often, net ecosystem metabolism and calcification are calculated based on changes in carbonate
system parameters, which can be reflected in pCO2 values [Kinsey, 1978; Gattuso et al., 1993; Shamberger
et al., 2011]. Therefore, any drivers that alter the carbonate chemistry of coral reefs that are not associated
with metabolism and calcification could affect the measurements of net community metabolic and
calcification rates.

Submarine groundwater discharge (SGD) has been shown to be an important source of freshwater and
dissolved materials to coastal ecosystems [Burnett et al., 2003], and there are varying mechanisms through
which groundwater can be exchanged with open water [Santos et al., 2012a]. SGD can refer to fresh
groundwater delivered by terrestrial hydraulic gradients [Burnett et al., 2003], as well as to the tidally driven
recirculation of seawater through sediments [Robinson et al., 2007; Santos et al., 2010]. Radon (222Rn) has
been used as a tracer for groundwater in coastal systems due to its naturally high concentrations in
groundwater compared to surface waters and its unreactive nature [Cable et al., 1996; Burnett et al., 2006].
Because 222Rn is produced through contact with sediments, it can trace both fresh groundwater as well as
tidally recirculated seawater [Santos et al., 2010]. Studies assessing SGD advection rates on coral reefs report a
broad range from 52 to 4732 Lm�1 h�1 and suggest that SGD can be an important source of nutrients to
coral reef ecosystems [Lewis, 1987; D’Elia and Wiebe, 1990; Paytan et al., 2006]. Past studies have speculated
that groundwater can influence the water column carbonate chemistry of coral reef ecosystems [Smith and
Pesret, 1974; Watanabe et al., 2013], but none have demonstrated a clear link between the two. It has been
shown that the point sources of SGD from geological features known as “ojos” can affect water column
carbonate chemistry; however, these features are highly localized [Crook et al., 2012].

We hypothesize that SGD is a broadly occurring and overlooked driver of pCO2 dynamics in the surface
waters of coral reef ecosystems. We assessed this hypothesis in two contrasting coral reef lagoons: a Pacific
Island fringing reef (Rarotonga) subject to large fresh groundwater inputs and a Great Barrier Reef atoll-like
system (Heron Island) with little to no fresh groundwater inputs. This study examined the variability of pCO2

and 222Rn over tidal and diel cycles within these two coral reef systems. We build on recent papers that
examined net ecosystem calcification at Heron Island [McMahon et al., 2013] and assessed the influence of
groundwater exchange on alkalinity at Rarotonga [Cyronak et al., 2013].

2. Materials and Methods
2.1. Study Sites

Rarotonga (21°14′S, 159°47′W), the largest island in the South Pacific Cook Island archipelago, has an area
of 67.19 km2, with ~36 km of shoreline (Figure 1). The island is surrounded by a fringing coral reef lagoon,
which extends from 30 to 900m to the reefal crest. The Cook Island chain was formed through volcanic

Figure 1. Map showing the location of Heron Island and Rarotonga. The dotted line around each island represents the
boundary of the reefal crest.
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activity and is composed of extinct volcanoes rising >5000m from the ocean floor [Thompson et al., 1998].
Rarotonga has a deeply dissected terrain, with steep ridges and deep valleys, and a maximum elevation of
650m above sea level [Thompson et al., 1998]. Rarotonga is characterized by a rainy (November to April)
and dry (May to October) season, with a mean annual rainfall amount of ~2100mmyr�1. Our study site was
located on the southwestern side of the island in Muri Lagoon. Muri Lagoon has an average depth of about
1.4m and covers an area of 1.75 km2 [Holden, 1992]. The flow in Muri Lagoon is dominated by wave setup
and runs from the reefal crest northwest toward shore and then northeast along the shore toward a
channel, which opens to the ocean [Holden, 1992]. Previous studies have relied on a heat balance [Befus
et al., 2013] and geochemical tracers [Tait et al., 2013] to assess SGD in Muri Lagoon. The tidal cycle in Muri
Lagoon is semidiurnal with a range of 0.56m measured during this study. In order to avoid confusion, the
sampling site is referred to as Rarotonga or Rarotonga lagoon throughout the rest of this paper.

Heron Island (23°27′S, 151°55′E) is a coral cay located along the southern portion of the Great Barrier Reef,
~72 km east of mainland Australia (Figure 1). The island itself consists mainly of coarse carbonate sands and
has an area of 0.16 km2, a coastline of ~2.2 km, and a maximum elevation of 3.6m above sea level. Heron
Island receives a mean annual rainfall amount of ~1028mm, with more precipitation occurring during the
summer and fall months (November to April). Data collection at both sites was performed during similar
seasons (i.e., months of higher precipitation), and the amount of rainfall was similar during both time series
(3.0mm at Rarotonga and 2.1mm at Heron Island). Heron Island is surrounded by a large coral lagoon
(26.4 km2), which has an average depth of 1.7m [Wild et al., 2004]. The benthic makeup of the lagoon is
~25% living coral cover, while the rest is predominately carbonate sands [Wild et al., 2004; Eyre et al., 2008;
Glud et al., 2008]. The permeability and porosity of the sands are high, which allows seawater to easily flow
through the sediments [Santos et al., 2010]. The flow in the western half of the lagoon is influenced by a
channel, which drains the lagoon at low tide. Our study site was on the southern side of Heron Island, which
receives a strong lagoonal signal due to tidally influenced currents flowing east across the site. The tidal
range measured during this study was about 2.1m.

2.2. Time Series Observations

Sampling in the water column at Rarotonga was conducted from 15 to 19 March 2012, while sampling in the
water column at Heron Island was conducted from 17 to 26 April 2012. Due to limitations in gear, groundwater
time series were not run concurrently with the water column time series. The beach groundwater time series
study at Rarotonga was performed on 21 March 2012 and lasted for 16 h, while the groundwater at Heron
Island was monitored for 28 h starting on 12 April 2012. In order to monitor the fluctuations in the groundwater
chemistry, a 0.5m deep bore was dug at the high-tide mark directly on shore from the sampling site at
Rarotonga. Due to the coarse nature of the Heron Island sediments (i.e., large chunks of coral that prevented a
bore from being installed onshore of the water column study site), a preinstalled bore 30m landward of the
low-tide mark on the opposite side of the island was used. The bore at Heron Island was 7.5m in depth.

During the water column time series at both study sites, all instrumentation was deployed ~10m
offshore of the low-tide mark and 0.2m from the bottom. A Vantage Pro (Davis Instruments) weather
station was used to measure atmospheric wind speed, temperature, and pressure directly onshore of
each sampling site. The monitoring of physicochemical parameters was done using a Hydrolab DS5X
(Hach Environmental) and an Aqua Troll 200 (In-Situ Inc.). Data for depth, temperature (±0.5%), and
salinity (±0.5%) were collected every 5min. Dissolved oxygen (DO) (±1%) was measured every 5min
using a Hach Luminescent Dissolved Oxygen (LDO®) probe connected to the Hydrolab. The pH (±0.003)
was measured every 5min using a SAMI2-pH sensor, which determines pH spectrophotometrically using
metacresol purple as the indicator [Martz et al., 2003; Seidel et al., 2008]. The SAMI2 is factory calibrated
to measure pH in the total hydrogen ion scale.

The pCO2 and
222Rn were measured concurrently through a shower head type gas equilibration device (GED)

[Santos et al., 2012b]. Seawater was pumped from each sampling site into the GED at a rate of ~2 Lmin�1

using a bilge pump. Air was recirculated through a closed loop from the GED through a DrieriteTM column
and into a Licor 7000 CO2 detector and a RAD7 222Rn detector. The Licor 7000 is a differential, nondispersive
infrared gas analyzer that was set to measure pCO2 (±1%) at 1min intervals. Prior to each field campaign, the
Licor was calibrated across a range of premixed CO2 gasses (306, 502 and 2017μatm). The RAD7 was factory
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calibrated and measures polonium daughters (218Po+ and 214Po+), which are converted into 222Rn
concentrations using radioactive decay equations. Radon concentrations were integrated over 30min
intervals to ensure acceptable counting statistics. In order to compare all of the data on similar time scales, an
hourly average was taken from measurements a half hour before and after the RAD7 began each cycle.

In order to measure fluctuations in groundwater chemistry, a peristaltic pump was used to pump water from
the bores at ~1 Lmin�1 into the GED. The lower flow rate used for groundwater could drive a lag in 222Rn
response time of up to 1 h; however, 222Rn values were used asmeasured, because 1 h running averages were
used during all subsequent data analysis. The SAMI2-pH was connected in line with the peristaltic pump in
order to measure pH in the groundwater bores. The total alkalinity (TA, ±0.2%) was measured during the
groundwater time series every 2 h by Gran Titration using a Metrohm automatic titrator and 0.01M HCl
standardized to Dickson Certified Reference Material (Batch 111). Samples for NOx were also taken every 2 h
and were filtered with a 0.45μm cellulose acetate filter and frozen at �20°C until analyzed following the
methods of Eyre and Ferguson [2005] using a Lachat FIA system. In Rarotonga, TA and NOx were also directly
measured in the freshwater end member [Cyronak et al., 2013].

2.3. Data Analysis

All pCO2 values were corrected according to the temperature and pressuremeasured in the GED using equations
from Pierrot et al. [2009]. TheΩAr was estimated using the Excel macro CO2 System (CO2SYS) [Pierrot et al., 2006]
with inputs of pCO2 and pH and the constants from Mehrbach et al. [1973] refit by Dickson and Millero [1987].
The estimates of ΩAr calculated using these two parameters of the carbonate system have been shown to be
robust [Cullison Gray et al., 2011]. Air-sea CO2 fluxes were calculated according to the following equation:

Flux ¼ k∝ pCO2 waterð Þ � pCO2 airð Þ
� �

(1)

where k is the gas transfer velocity for CO2, α is the solubility coefficient [Weiss, 1974], pCO2(water) is the partial
pressure of CO2 in the water column, and pCO2(air) is the partial pressure of CO2 in the air, which was assumed
to be constant at the Mauna Loa 2012 average of 393.8 ppm [Keeling et al., 2001]. Due to the shallow depths
and relatively strong currents at the study sites, we used the wind speed-based k600 parameterization from
Raymond and Cole [2001], which was derived from a compilation of estuarine and riverine studies. All k600
values were corrected for the Schmidt number of CO2 at in situ temperatures and salinities [Wanninkhof,
1992; Jahne et al., 1997]. Positive air-sea CO2 fluxes represent fluxes from the seawater into the atmosphere,
while negative fluxes represent fluxes into the seawater from the atmosphere. SGD fluxes were determined
using a nonsteady state 222Rn mass balance model described in detail by Burnett and Dulaiova [2003]. The
model has been successfully applied to both Heron Island [Santos et al., 2010] and Rarotonga [Tait et al., 2013]
in previous studies. Themodel estimates SGD fluxes based on the temporal change in 222Rn inventories in the
water column (1 h time steps) after accounting for all known 222Rn sources and sinks (i.e., atmospheric
evasion, mixing, 222Rn decay, and 226Ra). The missing 222Rn fluxes are then divided by the groundwater end
member concentration to obtain SGD advection rates in units of cmd�1.

Table 1. The Average (Ave.), Maximum (Max), Minimum (Min), and Range of Parameters Measured in the Water Column
at Rarotonga and Heron Island During This Study

Rarotonga Heron Island

Ave. Min Max Range Ave. Min Max Range

Depth (m) 0.69 0.42 0.98 0.56 0.95 0.15 2.20 2.05
Temp (°C) 27.4 24.1 31.0 6.9 25.4 20.7 28.5 7.8
pH 7.96 7.76 8.17 0.41 8.04 7.75 8.36 0.60
Salinity 35.6 34.3 36.6 2.3 34.6 34.2 35.2 1.0
Wind speed (m s�1) 4.0 2.0 5.8 3.7 2.3 0.0 6.6 6.6
DO (μmol L�1) 204 118 331 214 209 84 365 282
pCO2 (μatm) 549 327 833 507 471 178 956 778
222Rn (dpmm�3) 12662 5638 36291 30653 1003 255 2360 2105
ΩAr 3.5 1.7 6.7 5.0 4.1 2.0 8.0 6.0
SGD advection rate (cmd�1) 16.7 ± 4.7 0.0 68.8 68.8 29.7 ± 10.3 0.0 166.5 166.5
Air-sea CO2 flux (mmolm�2 d�1) 8.8 ± 3.4 �3.3 24.7 27.9 2.5 ± 2.1 �13.9 31.2 45.2
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3. Results
3.1. Groundwater Time Series

In the Rarotonga groundwater, pCO2 and
222Rn were 6 and 10 times higher than in
the water column, respectively (Tables 1
and 2). The pCO2 ranged from 3083 to
4024μatm, while the 222Rn ranged from
80,111 to 159,937 dpm (disintegrations per
minute)m�3 over a tidal cycle and was
highest during the ebb tide (Figure 2). The
pH and salinity followed similar but
opposite trends of pCO2, with salinity
ranging from 21.7 to 32.5 and pH ranging
from 7.28 to 7.33 (Figure 2). Both pH and
salinity were lower in the groundwater
than in the water column (Tables 1 and 2).
Average TA was 3339μmol L�1 during the

bore time series and was ~5500μmol L�1 in the freshwater endmember. The average NOx concentration was
28.2μmol L�1 in the freshwater end member.

In the Heron Island groundwater, pCO2 and
222Rn were approximately 3 times and 27 times higher than in the

water column, respectively (Tables 1 and 2). The highest pCO2 coincided with the peaks in 222Rn and the lowest

Table 2. Averages and Standard Deviations of Parameters Measured
in the Groundwater at Rarotonga and Heron Islanda

Rarotonga Heron Island

Depth (m) 0.34± 0.12 4.63 ± 0.39
Temp (°C) 25.4 ± 0.09 25.6 ± 0.03
pH 7.309± 0.01 7.602± 0.05
Salinity 28.3 ± 2.7 33.1 ± 0.2
TA (μmol L�1) 3339± 249 2243± 96
pCO2 (μatm) 3515± 205 1397± 199
NOx (μmol L�1) 28.2 ± 4.5 76.5 ± 27.6
222Rn (dpmm�3) 130836± 16460 27204± 3231
pCO2-EM (μatm) 5501± 183 1397± 199
222Rn-EM (dpmm�3) 242836± 19561 27204± 3231
Free-CO2-EM (μmol L�1) 173.9 ± 5.2 40.6 ± 5.1

aThe NOx concentration from Rarotonga is the average of direct
measurements (n=4) from the freshwater end member, while the
Heron Island NOx concentration is the average during the ground-
water time series. The pCO2-EM, 222Rn-EM, and free-CO2-EM are the
groundwater end members calculated as described in the text.

Figure 2. The pCO2, pH, salinity,
222Rn, and depth measured in the groundwater at Rarotonga and Heron Island.
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salinities (Figure 2). Salinity in the
groundwater ranged from 32.7 to
33.5 and was lowest during the ebb
tide with an average of 33.1 during
the time series. The pH followed a
trend similar to salinity and varied
between 7.49 and 7.69 during the
time series. 222Rn steadily increased
during the low tide and was highest
during the flood tide (Figure 2). The
temporal variability of solutes in the
groundwater indicates an active
mixing of groundwater and
seawater within the beach sands
over tidal time scales. The average
concentration of TA was
2243μmol L�1, and NOx was
76.5μmol L�1 during the Heron
Island groundwater time series.

3.2. Water Column Time Series

The water column time series at
Rarotonga covered 4days and 7

tidal cycles (Figure 3). Tidal rangewas highest in the beginning of the time series and decreased toward the end,
with a range of 0.56m over the course of the study. In the Rarotonga water column, pCO2 ranged from 327 to
833μatm with an average of 549μatm and followed a cycle that was indicative of both tidal and diel drivers
(Figure 3). This average pCO2 was well in excess of the expected concentration if the water column was in
equilibrium with the atmosphere (~394μatm), resulting in a relatively low-average seawater pH (7.96). During

the first two days, there were two
maximal peaks of pCO2: one during
the night and one in the early
morning. These peaks of pCO2

coincided with the peaks in 222Rn
concentrations at low tides
(Figure 3). The pCO2 was generally
lower during the final two diel cycles
when the tidal range and low-tide
222Rn peaks were smaller. The trends
in DO and pH were more consistent
with biological drivers, increasing
and decreasing smoothly over a diel
cycle (Figure 3). The minimum and
maximum DO concentrations during
the time series were 118 and
331μmol L�1 with an average of
204μmol L�1. The pH ranged 0.41
units over the course of the study,
with a minimum value of 7.76 and
maximum of 8.17. 222Rn
concentrations were highest during
ebb tides, and the average 222Rn
concentration in the water column
was 12,662dpmm�3. The highest

Figure 3. The pCO2, DO, pH,
222Rn (red), salinity, and depth measured in the

water column at Rarotonga over the course of this study. All time is in local
time, and gray bars represent nighttime hours. The arrows indicate times when
pCO2 and

222Rn vary concurrently. The line graphs represent data points every
half hour, which are averages for 30min before and after each respective time
point (see Methods for more detail).

Figure 4. The pCO2, DO, pH,
222Rn (red), salinity, and depth measured in the

water column at Heron Island over the course of this study. All time is in local
time, and gray bars represent nighttime hours. The arrows indicate times
when pCO2 and

222Rn vary concurrently; note how the arrows shift with the
tidal cycle. The line graphs represent data points every half hour, which are
averages for 30min before and after each respective time point (see methods
for more detail).
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222Rn concentrations were measured on the first day during the tidal cycle with the greatest range, and as the
tidal ranges became smaller, the 222Rn concentrations decreased (Figure 3).

The water column time series at Heron Island covered 10 days and 19 tidal cycles. Tidal range was greatest
during the first half of the time series (Figure 4). All parameters exhibited variations indicative of biological
drivers, with pCO2 decreasing until the late afternoon and then increasing throughout the night (Figure 4).
The average pCO2 over the course of the study was 471μatm in the Heron Island water column, which was
lower than at Rarotonga (549μatm). However, pCO2 in the Heron Island water column exhibited a larger
range (178 to 956μatm) than at Rarotonga (327 to 833μatm). Heron Island pCO2 showed small but
detectable variations unrelated to biological drivers, some of which coincided with the peaks in 222Rn
concentrations and shifted with the tidal cycle (Figure 4). DO and pH variability were opposite of pCO2, and
average pH was higher in the Heron Island water column (8.04) than in the Rarotonga water column (7.96)
(Table 1). The average 222Rn concentration was 1003 dpmm�3 with minimum and maximum concentrations
of 255 and 2360 dpmm�3. 222Rn concentrations were highest at the beginning of the flood tide and lowest
during high tides (Figure 4).

4. Discussion
4.1. Drivers of SGD Exchange

SGD exchange processes in both Rarotonga and Heron Islands were clearly influenced by tidal processes
(Figures 2–4). Tidal pumping can refer to multiple but fundamentally distinct processes [Santos et al.,
2012a]. Both seawater recirculation and terrestrial hydraulic gradient driven SGD can fall under the more
general term of tidal pumping due to the influence of tides on both processes [Santos et al., 2009]. Tides
affect seawater recirculation as seawater infiltrates the beach face during high tides and is discharged

Figure 5. Linear regressions of 222Rn, pCO2, and pH versus salinity in the groundwater time series at Rarotonga and
Heron Island.
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during low tides. Likewise, steeper hydraulic gradients at low tide can cause greater amounts of fresh
groundwater to be discharged than during high tides. 222Rn concentrations during the groundwater time
series at Rarotonga were highest during the ebb tide (Figure 2), which is indicative of positively pressured
fresh groundwater being held off by sea level at high tides. The Heron Island groundwater showed a
different trend, with 222Rn concentrations highest during the flood tide (Figure 2). This is indicative of a
slow release of high 222Rn groundwater and seawater recirculation being the dominant exchange
mechanism of SGD at Heron Island.

When plotted against salinity, 222Rn exhibited a significant negative linear trend in the groundwater of both
systems (Figure 5). Fresh groundwater end members can be extrapolated from the y intercept (i.e., when
salinity = 0). In Rarotonga, the estimates of a 222Rn groundwater end member (242,836 ± 19,561 dpmm�3)
using this method agree well with those measured in fresh groundwater (179,202 to 294,146 dpmm�3)
[Cyronak et al., 2013], which is consistent with previous studies using a similar approach in systems where
fresh SGD is the main source of 222Rn [Peterson et al., 2009]. This is further evidence of fresh groundwater and
a terrestrial hydraulic gradient driving SGD at Rarotonga [see Santos et al., 2012a, Figure 1]. When 222Rn is
plotted against the salinity in the Heron Island groundwater, there is a disagreement between the observed
and extrapolated endmember concentrations. The concentration of the 222Rn endmember extrapolated to 0
salinity is 3-fold higher than the highest measured groundwater 222Rn concentration and is ~7.5-fold higher
than the average groundwater 222Rn concentration [Santos et al., 2010]. This is further evidence of seawater
recirculation being the dominant driver of SGD, because there would be no freshwater end member to
extrapolate 222Rn values back to at Heron Island. These observations are consistent with the isolated,
narrow freshwater lens observed at Heron Island [Santos et al., 2010]. Therefore, the end members for
Rarotonga groundwater were calculated from the y intercept of each parameter versus salinity measured
during the groundwater time series, while the end members for Heron Island were calculated as the
average concentrations measured over the groundwater time series (Table 2).

Linear regressions between 222Rn and salinity in the Rarotonga (R2 = 0.008, data not shown) and Heron Island
(R2 = 0.016, data not shown) water columns showed no significant correlation, possibly due to the small range
of salinity in both systems (Table 1). However, the temporal variations of 222Rn concentrations in the water
column revealed that the highest 222Rn concentrations at Rarotonga coincided with ebb tides and the
highest 222Rn concentrations at Heron Island coincided with the beginning of flood tides (Figures 3 and 4).

Figure 6. Linear Regressions of pCO2, DO, ΩAr, and pH versus 222Rn in the water column at Rarotonga.
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Also, the salinity had a greater range in the Rarotonga water column (2.4) when compared to the Heron Island
water column (1.0) (Table 1). This also indicates that a terrestrial hydraulic gradient driving fresh groundwater
exchange is a major driver of SGD in Rarotonga, while seawater recirculation is dominant in Heron Island. In
support of this hypothesis, using a combination of 223Ra and 224Ra isotopes, 222Rn concentrations, and
electrical resistivity mapping, Tait et al. [2013] estimated that fresh groundwater was a significant source of
SGD to the Rarotonga lagoon. Tait et al. [2013] also found that the average 222Rn concentrations in shallow
saline groundwater were lower than the highest surface water concentrations, implying that the recirculated
seawater cannot explain the 222Rn enrichments observed in the Rarotonga water column.

4.2. Contrasting pCO2 Dynamics in Rarotonga and Heron Island

The pCO2 in the Rarotonga water columnwas positively correlated with 222Rn concentrations (Figure 6). Since
the highest 222Rn concentrations were associated with greater tidal ranges, which would influence SGD
inputs, there are probably different correlations between pCO2 and

222Rn based on tidal height. However,
over the course of the entire study, there was a statistically significant correlation (R2 = 0.301, p< 0.01),
indicating that SGD is a source of free CO2 to the Rarotonga water column (Figure 6). Over the course of the
time series, pCO2 in the water column was negatively correlated with salinity (R2 = 0.402, p< 0.01, data not
shown), also indicating that fresh groundwater is a source of free CO2. The significant correlations between
pCO2 and both 222Rn and salinity, despite multiple other drivers of pCO2 dynamics over the course of a diel
cycle (i.e., reefal metabolism), indicate that SGD is an important source of free CO2. It seems that due to the
high pCO2 of the fresh groundwater (~5500 μatm), SGD in Rarotonga can act as a delivery mechanism of
free CO2 to the water column.

The dynamics of pCO2 and
222Rn in the Heron Island water column were more complex than in Rarotonga

(Figure 7). Salinity and pCO2 were not well correlated in the water column (R2 =0.07, data not shown), indicating
that fresh SGD does not play a role in driving the pCO2 dynamics of the Heron Island water column. However,
there were distinct correlations of pCO2 with

222Rn depending on the time of the day. The pCO2 was positively
correlated with 222Rn concentrations when the afternoon time points (times of highest primary production)
were removed (Figure 7). During the afternoon, there was no statistically significant correlation between 222Rn
and pCO2 (R

2 =0.01). DO concentrations were negatively correlated with 222Rn during the night and morning
and positively correlated in the afternoon and evening (Figure 7). The high pCO2/lowDO and low pCO2/high DO

Figure 7. Linear regressions of pCO2, DO,ΩAr, and pH versus 222Rn in the water column at Heron Island. Regression equa-
tions displayed for pCO2, ΩAr, and pH are shown with values in the afternoon removed. Measurements are divided into
night (22:00 to 06:00), morning (06:00 to 12:20), afternoon (12:20 to 17:20), and evening (17:20 to 22:00). Regressions for the
DO versus 222Rn correlations are as follows: night (DO=�0.07(222Rn)+ 218, R2=0.55), morning (DO=�0.1(222Rn)+279,

R2=0.35), afternoon (DO=�0.03(222Rn) +272, R2=0.21), and evening (DO=�0.03(222Rn)+ 199, R2=0.06).
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concentrations associated with high 222Rn in
the Heron Island water column indicate that
SGD may stimulate coral reef metabolism.
Figure 8 illustrates how pCO2 and DO
concentrations in the water column are
related to 222Rn concentrations (and thus
SGD) over the course of a day. High nutrient
and organic loads from SGD could stimulate
photosynthesis during the day and
respiration at night, which would influence
pCO2 and DO correlations with 222Rn
differently over a diel cycle (see next
paragraph, Figures 7 and 8).

Average solute concentrations from the
groundwater time series at both Rarotonga
and Heron Island are reported in Table 2.
Salinity and pH were both lower in the
Rarotonga groundwater than in the Heron
Island groundwater. The groundwater in
Rarotonga had ~3 times the average pCO2

and ~5 times the 222Rn concentrations as
that in Heron Island. The pCO2 end member
in Rarotonga was almost 5 times of that in
Heron Island, perhaps influencing the
higher-average pCO2 observed in the
Rarotonga water column (Tables 1 and 2). In
general, the Heron Island water column

exhibited a larger range of pCO2 than in Rarotonga. However, the Rarotonga water column had a higher-
average pCO2 over the course of the study, which is indicative of the different drivers of SGD. A constant input
of high-pCO2 groundwater from SGD in Rarotonga could have resulted in the higher-average water column
pCO2, while potentially reducing the range. Conversely, because of the lower pCO2 in the Heron Island
groundwater and large amount of biological activity driving water column pCO2 variability, the range of pCO2

was higher, while the average was lower. Interestingly, SGD stimulated the uptake and release of CO2 through
the controls on the biological processes in the Heron Island water column (Figures 7 and 8). We hypothesize
that the differences between the influence of SGD on pCO2 dynamics in Rarotonga and Heron Island were
related to the different NOx concentrations in the groundwater at both locations (Table 2). The fluxes of NOx

from the Heron Island groundwater were calculated to be some of the highest in undisturbed ecosystems
due to large local seabird populations [Santos et al., 2010], although these loads are not reflected in water
column NOx concentrations (~0.8μmol L�1) due to rapid biological assimilation and high rates of NOx loss via
denitrification [Eyre et al., 2008; Eyre et al., 2013]. Based on 222Rn and NOx end members in the groundwater
(Tables 1 and 2), the average SGD-derived fluxes of NOx were 4.7 ± 1.3mmolm�2 d�1 to the Rarotonga water
column and 22.7 ± 7.9mmolm�2 d�1 to the Heron Island water column. Therefore, the delivery of large
amounts of NOx from SGD to the Heron Island water column may stimulate both heterotrophic and
autotrophic activity, while the lower fluxes of NOx to the Rarotonga water column have less of an effect on
reefal metabolism.

The frequency distributions of pCO2 offer another way to examine the differences between the influence of
SGD on water column carbonate chemistry at Rarotonga and Heron Island. The pCO2 distribution in the
Rarotonga water column was bimodal, with peaks between 300–400μatm and 600–700μatm (Figure 9). This
implies that two distinct phases occurred in Rarotonga, one with high SGD inputs and high pCO2 values and
another with low SGD inputs and low pCO2 values. This supports the hypothesis that steep hydraulic
gradients of groundwater acted as a source of free CO2 to the Rarotonga water column at low tide. Heron
Island however followed a smoother Gaussian distribution with the frequency of higher concentrations

Figure 8. Diagram showing the relationship between pCO2, DO,
and 222Rn over different times of the day in the Heron Island
water column.
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trailing off after 400μatm (Figure 9). This
supports the hypothesis that diel pCO2

variability in the Heron Island water
column is predominantly influenced by
biological activity.

The two distinct ways in which SGD can
influence pCO2 variability in coral reefs has
implications for how OA will impact each
ecosystem over the long term. Rarotonga
had a consistently higher pCO2, which may
reduce community calcification, while
pCO2 at Heron Island was highly
dependent on biological activity, which
could both raise and lower community
calcification rates at different times of the
day. Systems like Rarotonga with elevated
pCO2 may offer sites analogous to volcanic

vents used to predict the in situ effects of OA on reefal ecosystems [Hall-Spencer et al., 2008; Fabricius et al.,
2011]. In fact, systems throughout the world with differing SGD inputs may offer natural gradients of average
pCO2, while still maintaining the diel variability observed on most reefal flats. This would offer novel ways to
study the impact of OA because, unlike volcanic vents and ojos [Hall-Spencer et al., 2008; Crook et al., 2012],
calcification rates of entire coral reef lagoons could be compared against a natural range of average pCO2 and
pH values. However, SGD would also deliver freshwater and other solutes such as nutrients into the lagoons,
which could confound any comparisons between different ecosystems.

4.3. Influences of Groundwater Chemistry

The influence of groundwater on the pCO2 dynamics of coral reef water columns is not only highly
dependent on the groundwater chemistry but can also be influenced by freshwater dilution and changes in
seawater buffering capacity. Calculations were performed in CO2SYS in order to assess the influence of pure
dilution and a reduction in buffering capacity on pCO2. A seawater end member with starting TA
(2300μmol L�1), dissolved inorganic carbon (DIC; 1950μmol L�1), salinity (38), and temperature (25°C) was
diluted to a range of salinities (34–38) assuming dilution by a freshwater end member with no TA and DIC.
The linear regression between salinity and pCO2 indicates that between the salinities of 34 and 38, a decrease
in salinity of 1 unit results in a decrease in pCO2 of ~13μatm, the opposite of what was observed at Rarotonga
(Figure 10a). However, if a freshwater end member with chemistry similar to Rarotonga groundwater
(TA= 5500μmol, DIC = 5617μmol) is used, a decrease in salinity of 1 unit results in an increase in pCO2 of
~42μatm, similar to the results from the Rarotonga groundwater time series (Figures 5 and 10a). Therefore,
any changes to water column carbonate chemistry due to SGD are highly dependent on the specific
groundwater chemistry including salinity, DIC, and TA concentrations. Because 222Rn is a conservative,
unambiguous tracer of SGD inputs, the correlations between 222Rn and carbonate system parameters
represent bulk changes in carbonate chemistry due to both dilution and groundwater chemistry.

The plots of TA versus DIC offer a way to separate out the effects of biological (e.g., photosynthesis and
respiration) from geochemical (e.g., CaCO3 precipitation and dissolution) processes on the carbonate system
[Gattuso et al., 1996; Suzuki and Kawahata, 2003; Andersson and Gledhill, 2013]. Because geochemical
processes affect both TA and DIC concentrations (ΔDIC= ΔTA/2) and biological processes affect only DIC, the
slope of the TA versus DIC relationship can offer insights into the processes behind changes in water column
carbonate chemistry. As presented in other studies, discrete samples for TA and DIC were taken from both the
Rarotonga [Cyronak et al., 2013] and Heron Island [McMahon et al., 2013] water columns during the respective
time series presented here (Figure 10b). The relationship in Rarotonga (TA = 0.68(DIC) + 947, R2 = 0.926)
indicates that the carbonate system is influenced 66% by biological processes, while the relationship in Heron
Island (TA= 0.32(DIC) + 1635, R2 = 0.842) indicates 84% biological influence. This further supports the
hypothesis that biological processes are a more dominant driver of carbonate system variability in the Heron
Island water column than in Rarotonga. However, the more apparent influence of “geochemical” processes in

Figure 9. Percent frequency distributions of pCO2 values at the two
study sites in the water column. Each value represents pCO2 measure-
ments that had the same value in the hundreds place (i.e., 100 repre-
sents values between 100 to 199).
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Rarotonga is most likely due to the
differences in groundwater chemistry and
the large amount of TA delivered by SGD
into the water column [Cyronak et al.,
2013] and not necessarily increases in
CaCO3 precipitation and dissolution. The
TA versus DIC plots further demonstrate
the diverse influences of SGD on water
column carbonate chemistry, and that
care must be taken when using the TA
versus DIC relationship to determine
biological versus geochemical influences
on the carbonate system of
whole ecosystems.

The groundwater at Rarotonga is high in
TA (~5500 μmol L�1), and SGD has been
shown to increase the TA of the lagoon
water column (Figure 10) [Cyronak et al.,
2013]. It has been hypothesized that any
source of TA to a coral reef lagoon may be
able to buffer coral ecosystems against
the decreases in pH due to OA [Kleypas
and Langdon, 2006; Andersson et al.,
2007], due to the increases in HCO3

� and
CO2

3� ions and their ability to absorb H+

ions as CO2 is added to seawater.
However, both pH and ΩAr of the water
column exhibited negative, although
not significant trends with 222Rn
concentrations (Figure 6). The impact of
SGD on pH and ΩAr may be explained by
the concurrent flux of CO2 with TA. Even
though there are many drivers

influencing pH and ΩAr over a diel cycle [Gray et al., 2012; Shaw et al., 2012], this suggests that SGD
lowers the buffering capacity of the water column and may represent a positive feedback to OA at
Rarotonga. There are other aspects that need to be taken into account in order to properly address any
buffering capacity. For instance, excess CO2 would be released to the atmosphere, while TA would
remain in the water column. Both lagoonal circulation patterns and residence time also play large roles
in any buffering capacity of SGD-derived TA [Andersson and Mackenzie, 2012].

In contrast to Rarotonga, the average TA in the groundwater of Heron Island was only 2243μmol L�1, which is
similar to the TA of the water column (2185 to 2323μmol L�1) (Figure 10 and Table 2) [McMahon et al., 2013].
Therefore, SGD is unlikely to be a significant source of TA to the Heron Island water column. In the water
column, pH (R2 = 0.145, p< 0.01) and ΩAr (R

2 = 0.113, p< 0.01) were both negatively correlated with 222Rn
when the afternoon time points (i.e., most productive times of the day) were removed, indicating that SGD
also acts as a positive feedback to OA in Heron Island. In the afternoon, any SGD inputs that stimulate
production could increase the pH and ΩAr; however, there is no statistically significant correlation between
pH orΩAr and

222 Rn during that time period (Figure 7). This may be because SGD is also a source of free CO2

to the water column at the same time that it stimulates production. The influence of local geology most likely
plays a large factor in determining the carbonate chemistry of the local groundwater and thus the influence
of SGD on water column carbonate chemistry. The release of free CO2 was likely influenced by the rates of
microbial respiration in both landmasses. However, the high rates of sulphate reduction in Rarotonga
groundwater most likely reduced the amount of free CO2 fluxed to the water column due to the production
of alkalinity and associated buffering [Cyronak et al., 2013].

Figure 10. (a) Modeled effect of freshwater dilution on pCO2 using
CO2SYS and two freshwater end members. An end member with both
DIC and TA set to 0 (circles), and an end member with chemistry similar
to Rarotonga groundwater (triangles; TA=5500μmol, DIC=5617μmol)
was used. (b) TA versus DIC concentrations in both the Rarotonga and
Heron Island water columns. Data are from discrete samples taken dur-
ing the same time series as presented in this study but previously pub-
lished by Cyronak et al. [2013] and McMahon et al. [2013].

Global Biogeochemical Cycles 10.1002/2013GB004598

CYRONAK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 409



4.4. SGD and Air-Sea CO2 Fluxes

Average air-sea CO2 fluxes over the
course of this study indicate that both
lagoons were a source of CO2 to the
atmosphere (Figure 11). Rarotonga
(8.8 ± 3.4mmolm�2 d�1) had a
~3-fold higher average air-sea flux
of CO2 than Heron Island
(2.5 ± 2.1mmolm�2 d�1). Air-sea CO2

fluxes in other reefs have been shown
to vary over a diel cycle, ranging from
�2.1 to 6.5mmolm�2 d�1, and are
thought to be predominantly
biologically controlled [Gattuso et al.,
1993, 1995; Frankignoulle et al., 1996;
Bates, 2002]. Air-sea CO2 fluxes at both
Rarotonga and Heron Island varied
over diel cycles, with higher fluxes
observed at night (Figure 11).
However, the majority of these fluxes
were positive over the entire diel
cycle, even when photosynthesis was
occurring. Coral reef ecosystems have
also been shown to switch between
sources and sinks of CO2 dependant
on the time of year [Bates, 2002; Drupp
et al., 2013]. However, it was not within
the scope of this study to assess the
seasonal variability of air-sea CO2

fluxes at Rarotonga and Heron Island.

A nonsteady state 222Rn mass balance
[Burnett and Dulaiova, 2003] estimated average SGD advection rates to be 16.7 ± 4.7 cmd�1 at Rarotonga and
29.7 ± 10.3 cmd�1 at Heron Island. Using the end member concentrations of free CO2 in the groundwater
(Table 2), SGD delivered an average of 29.0 ± 8.2mmol free CO2m

�2 d�1 to the Rarotonga water column and
an average of 12.1 ± 4.2mmol free CO2m

�2 d�1 to the Heron Island water column. In support of these SGD-
derived free CO2 fluxes is a TA mass balance calculated over 1 day at the same sampling site during this study
[Cyronak et al., 2013]. The mass balance agreed well with the SGD-derived TA fluxes calculated from 222Rn
inputs, indicating that the 222Rn fluxes derived from the freshwater end member are reliable. Even though
average 222Rn-derived SGD fluxes in Rarotonga (mostly fresh SGD) were roughly half of those in Heron Island
(saline SGD), the ~3-fold higher SGD-derived CO2 fluxes were consistent with the ~3-fold higher average air-
sea CO2 fluxes in Rarotonga. Since the net ecosystem production of coral reefs is close to zero, the main
reason reefs are thought to be sources of CO2 to the atmosphere is due to CO2 released during calcification
[Frankignoulle et al., 1994; Gattuso et al., 1999]. Our results demonstrate that SGD can also contribute to the
air-sea flux of CO2 from coral reefs. Interestingly, any reduction in calcification due to a lower pH andΩAr from
SGD could further reduce pCO2 levels in the water column. More studies to assess the impact of SGD on air-
sea CO2 fluxes in coral reef ecosystems over longer time scales are needed.

4.5. Implications of SGD to Community Level Metabolism Measurements

These results have implications to studies that calculate community level metabolic and calcification rates in
coral reefs. There are generally two methods, besides incubations, used to calculate coral reef community
metabolic and calcification rates. The Lagrangian, or flow respirometry method, refers to the measuring
changes in solute concentrations as seawater flows across reefal habitats [Barnes and Devereux, 1984;

Figure 11. SGD advection rates derived from the steady state model of
Burnett and Dulaiova [2003] and air-sea CO2 fluxes derived from the calcu-
lations of Raymond and Cole [2001] with the atmospheric CO2 concentration
assumed to be constant at 393.8ppm in (a) the Rarotonga water column and
(b) the Heron Island water column. Only a portion of the Heron Island time
series is shown in order to better reveal the diel trends. Error bars on the SGD
advection rates represent uncertainty derived from the model.
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Gattuso et al., 1996]. This is usually done by measuring changes in seawater chemistry as an instrument
package is floated across the reef [Gattuso et al., 1996; Chisholm and Barnes, 1998] or as seawater flows
between two stations [Yates and Halley, 2006; Shamberger et al., 2011]. SGD could easily impact Lagrangian
studies if there were significant groundwater inputs as the water mass flowed across the reef. The slack, or
low-tide method, refers to measuring changes in carbonate chemistry over time during low tides when
coral communities are isolated from mixing with the open ocean [Kinsey, 1978; Ohde, 1995; Silverman et al.,
2012]. The selection of the sampling site in the studies using the slack tide approach is critical as SGD fluxes
tend to be highest at low tides [Burnett et al., 2003].

A possible example of discrepancies in calculated coral reef calcification rates, possibly due to SGD inputs,
can be found in the literature. To determine community metabolic rates, Chisholm and Barnes [1998]
floated an instrument package across Lizard Island lagoon in the northern Great Barrier Reef. There were
large discrepancies in the rates of calcification determined by two separate techniques, a combined DO/pH
technique and via changes in alkalinity. The rates of organic matter decomposition and nitrification evoked
to explain these discrepancies were determined to be unrealistic [Gattuso et al., 1999], but no alternative
explanations were suggested. Due to the relatively high rainfall preceding the study, the proximity of the
instruments to land, and the relatively high elevation of Lizard Island (360m, somewhat similar to Rarotonga), it
is possible to assume that there were some SGD inputs during their study. If SGD impacts the seawater
chemistry of Lizard Island lagoon similarly to the locations investigated here, any changes in DO/pH would be

Figure 12. Conceptual models showing how SGD influences pCO2 dynamics in thewater column at Rarotonga and Heron Island.
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less affected by SGD than changes in pCO2 and TA (Figures 3 and 4). If the package was floated across an area of
high SGD inputs, it could account for the anomalies observed by Chisholm and Barnes [1998].

4.6. Conclusions

The anomalies of pCO2 in both systems studied here were indicative of broadly occurring SGD inputs as
supported by (1) temporal variations of 222Rn and CO2; (2) correlations between

222Rn, salinity, and pCO2; (3)
pCO2 dynamics in the groundwater; (4) frequency distributions of pCO2 values in the water column; (5) TA
versus DIC plots; and (6) air-sea CO2 fluxes compared to SGD-derived free CO2 fluxes. The exchange
mechanism of SGD influenced carbonate chemistry differently in each system, impacting pCO2 variability
through both the direct delivery of free CO2 and the stimulation of coral reef metabolism (e.g.,
photosynthesis and respiration). In summary, the distinct ways that SGD can influence water column pCO2

are highly dependent on groundwater chemistry, SGD flux rates, and the driving forces of groundwater
exchange, which are variable across different coral reef ecosystems (Figure 12). More comprehensive studies
on seasonal time scales and larger spatial scales are necessary to further examine the effects of SGD on
seawater carbonate chemistry across a diverse range of coral reefs.

The high SGD-derived fluxes of free CO2 into the two coral reef ecosystems may represent a positive
feedback to OA (i.e., decreases local pH and ΩAr) on a local scale. Carbonate system variability caused by
SGD may also influence ecosystem level calculations of metabolism and calcification. This has important
implications for OA research, as measuring net ecosystem calcification rates is critical to understanding
how OA will impact coral reefs. In fact, systems with variable SGD inputs may have naturally variable pCO2

levels, potentially allowing for in situ studies on the impact of OA on coral reefs over ecosystemwide scales.
Finally, local drivers of coral reef carbonate chemistry may offer more approachable management solutions
to mitigating the effects of OA on coral reefs [Kelly et al., 2011]. In conclusion, this overlooked driver of
carbonate system dynamics may have important implications to studies assessing the impact that OA will
have on the biogeochemistry of coral reefs.
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