21,900 research outputs found

    Depolarization volume and correlation length in the homogenization of anisotropic dielectric composites

    Full text link
    In conventional approaches to the homogenization of random particulate composites, both the distribution and size of the component phase particles are often inadequately taken into account. Commonly, the spatial distributions are characterized by volume fraction alone, while the electromagnetic response of each component particle is represented as a vanishingly small depolarization volume. The strong-permittivity-fluctuation theory (SPFT) provides an alternative approach to homogenization wherein a comprehensive description of distributional statistics of the component phases is accommodated. The bilocally-approximated SPFT is presented here for the anisotropic homogenized composite which arises from component phases comprising ellipsoidal particles. The distribution of the component phases is characterized by a two-point correlation function and its associated correlation length. Each component phase particle is represented as an ellipsoidal depolarization region of nonzero volume. The effects of depolarization volume and correlation length are investigated through considering representative numerical examples. It is demonstrated that both the spatial extent of the component phase particles and their spatial distributions are important factors in estimating coherent scattering losses of the macroscopic field.Comment: Typographical error in eqn. 16 in WRM version is corrected in arxiv versio

    Nuclear three-body problem in the complex energy plane: Complex-Scaling-Slater method

    Full text link
    The physics of open quantum systems is an interdisciplinary area of research. The nuclear "openness" manifests itself through the presence of the many-body continuum representing various decay, scattering, and reaction channels. As the radioactive nuclear beam experimentation extends the known nuclear landscape towards the particle drip lines, the coupling to the continuum space becomes exceedingly more important. Of particular interest are weakly bound and unbound nuclear states appearing around particle thresholds. Theories of such nuclei must take into account their open quantum nature. To describe open quantum systems, we introduce a Complex Scaling (CS) approach in the Slater basis. We benchmark it with the complex-energy Gamow Shell Model (GSM) by studying energies and wave functions of the bound and unbound states of the two-neutron halo nucleus 6He viewed as an α\alpha+ n + n cluster system. In the CS approach, we use the Slater basis, which exhibits the correct asymptotic behavior at large distances. To extract particle densities from the back-rotated CS solutions, we apply the Tikhonov regularization procedure, which minimizes the ultraviolet numerical noise. While standard applications of the inverse complex transformation to the complex-rotated solution provide unstable results, the stabilization method fully reproduces the GSM benchmark. We also propose a method to determine the smoothing parameter of the Tikhonov regularization. The combined suite of CS-Slater and GSM techniques has many attractive features when applied to nuclear problems involving weakly-bound and unbound states. While both methods can describe energies, total widths, and wave functions of nuclear states, the CS-Slater method, if it can be applied, can provide an additional information about partial energy widths associated with individual thresholds.Comment: 15 pages, 16 figure

    Geometric invariance of mass-like asymptotic invariants

    Full text link
    We study coordinate-invariance of some asymptotic invariants such as the ADM mass or the Chru\'sciel-Herzlich momentum, given by an integral over a "boundary at infinity". When changing the coordinates at infinity, some terms in the change of integrand do not decay fast enough to have a vanishing integral at infinity; but they may be gathered in a divergence, thus having vanishing integral over any closed hypersurface. This fact could only be checked after direct calculation (and was called a "curious cancellation"). We give a conceptual explanation thereof.Comment: 13 page

    Evidence of amplitude modulation due to Resonant Mode Coupling in the delta Scuti star KIC5892969

    Get PDF
    A study of the star KIC5892969 observed by the Kepler satellite is presented. Its three highest amplitude modes present a strong amplitude modulation. The aim of this work is to investigate amplitude variations in this star and their possible cause. Using the 4 years-long observations available, we obtained the frequency content of the full light curve. Then, we studied the amplitude and phase variations with time using shorter time stamps. The results obtained are compared with the predicted ones for resonant mode coupling of an unstable mode with lower frequency stable modes. Our conclusion is that resonant mode coupling is consistent as an amplitude limitation mechanism in several modes of KIC5892969 and we discuss to which extent it might play an important role for other delta Scuti stars

    Quasi-periodic Oscillations in the X-ray Light Curves from Relativistic Tori

    Get PDF
    We use a relativistic ray-tracing code to analyze the X-ray emission from a pressure-supported oscillating relativistic torus around a black hole. We show that a strong correlation exists between the {\it intrinsic} frequencies of the torus normal modes and the {\it extrinsic} frequencies seen in the observed light curve power spectrum. This correlation demonstrates the feasibility of the oscillating-torus model to explain the multiple peaks seen in black hole high-frequency quasi-periodic oscillations. Using an optically thin, monochromatic emission model, we also determine how a relativistically broadened emission line and the amplitude of the X-ray modulations are dependent on the observer's inclination angle and on the torus oscillation amplitudes. Observations of these features can provide important information about the torus as well as the black hole.Comment: 4 pages, 3 figures, submitted to ApJ

    Depolarization regions of nonzero volume in bianisotropic homogenized composites

    Get PDF
    In conventional approaches to the homogenization of random particulate composites, the component phase particles are often treated mathematically as vanishingly small, point-like entities. The electromagnetic responses of these component phase particles are provided by depolarization dyadics which derive from the singularity of the corresponding dyadic Green functions. Through neglecting the spatial extent of the depolarization region, important information may be lost, particularly relating to coherent scattering losses. We present an extension to the strong-property-fluctuation theory in which depolarization regions of nonzero volume and ellipsoidal geometry are accommodated. Therein, both the size and spatial distribution of the component phase particles are taken into account. The analysis is developed within the most general linear setting of bianisotropic homogenized composite mediums (HCMs). Numerical studies of the constitutive parameters are presented for representative examples of HCM; both Lorentz-reciprocal and Lorentz-nonreciprocal HCMs are considered. These studies reveal that estimates of the HCM constitutive parameters in relation to volume fraction, particle eccentricity, particle orientation and correlation length are all significantly influenced by the size of the component phase particles

    HD 41641: A classical δ\delta Sct-type pulsator with chemical signatures of an Ap star

    Get PDF
    Among the known groups of pulsating stars, δ\delta Sct stars are one of the least understood. Theoretical models do not predict the oscillation frequencies that observations reveal. Complete asteroseismic studies are necessary to improve these models and better understand the internal structure of these targets. We study the δ\delta Sct star HD 41641 with the ultimate goal of understanding its oscillation pattern. The target was simultaneously observed by the CoRoT space telescope and the HARPS high-resolution spectrograph. The photometric data set was analyzed with the software package PERIOD04, while FAMIAS was used to analyze the line profile variations. The method of spectrum synthesis was used for spectroscopically determining the fundamental atmospheric parameters and individual chemical abundances. A total of 90 different frequencies was identified and analyzed. An unambiguous identification of the azimuthal order of the surface geometry could only be provided for the dominant p-mode, which was found to be a nonradial prograde mode with m = +1. Using TeffT_\mathrm{eff} and logg\log g, we estimated the mass, radius, and evolutionary stage of HD 41641. We find HD 41641 to be a moderately rotating, slightly evolved δ\delta Sct star with subsolar overall atmospheric metal content and unexpected chemical peculiarities. HD 41641 is a pure δ\delta Sct pulsator with p-mode frequencies in the range from 10 d1^{-1} to 20 d1^{-1}. This pulsating star presents chemical signatures of an Ap star and rotational modulation due to surface inhomogeneities, which we consider indirect evidence of the presence of a magnetic field.Comment: 11 pages, 11 figures, accepted for publication in A&
    corecore