322 research outputs found

    MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells

    No full text
    The CARMA1/CARD11-BCL10-MALT1 (CBM) complex bridges T and B cell antigen receptor (TCR/BCR) ligation to MALT1 protease activation and canonical nuclear factor kappa B (NF-kappa B) signaling. Using unbiased mass spectrometry, we discover multiple serine phosphorylation sites in the MALT1 C terminus after T cell activation. Phospho-specific antibodies reveal that CBM-associated MALT1 is transiently hyper-phosphorylated upon TCR/CD28 co-stimulation. We identify a dual role for CK1 alpha as a kinase that is essential for CBM signalosome assembly as well as MALT1 phosphorylation. Although MALT1 phosphorylation is largely dispensable for protease activity, it fosters canonical NF-kappa B signaling in Jurkat and murine CD4 T cells. Moreover, constitutive MALT1 phosphorylation promotes survival of activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) cells addicted to chronic BCR signaling. Thus, MALT1 phosphorylation triggers optimal NF-kappa B activation in lymphocytes and survival of lymphoma cells

    Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy

    Full text link
    The cyclic deformation behavior of cryomilled (CM) AA5083 alloys was compared to that of conventional AA5083-H131. The materials studied were a 100 pct CM alloy with a Gaussian grain size average of 315 nm and an alloy created by mixing 85 pct CM powder with 15 pct unmilled powder before consolidation to fabricate a plate with a bimodal grain size distribution with peak averages at 240 nm and 1.8 μm. Although the ultra-fine-grain (UFG) alloys exhibited considerably higher tensile strengths than those of the conventional material, the results from plastic-strain-controlled low-cycle fatigue tests demonstrate that all three materials exhibit identical fatigue lives across a range of plastic strain amplitudes. The CM materials exhibited softening during the first cycle, similar to other alloys produced by conventional powder metallurgy, followed by continual hardening to saturation before failure. The results reported in this study show that fatigue deformation in the CM material is accompanied by slight grain growth, pinning of dislocations at the grain boundaries, and grain rotation to produce macroscopic slip bands that localize strain, creating a single dominant fatigue crack. In contrast, the conventional alloy exhibits a cell structure and more diffuse fatigue damage accumulation

    Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes

    Get PDF
    De manera general, la apendicitis aguda es la causa de abdomen agudo más frecuente en la edad pediátrica, representa el 10% de todas las admisiones a los diferentes servicios de urgencias; sin embargo, en los niños menores de dos años su presentación es infrecuente, alrededor del 2% de todos los casos de abdomen agudo. Se presenta un caso clínico que corresponde a una paciente de 13 días de vida que fue llevada al servicio de emergencia por presentar vómitos de tipo bilioso. Fue intervenida quirúrgicamente con diagnóstico preoperatorio de atresia intestinal, posterior a la cirugía el diagnóstico definitivo correspondió a apendicitis y peritonitis por perforación apendicular. Se explora y se encuentra como hallazgo quirúrgico: obstrucción íleon terminal con una banda adherida al ciego, apéndice cecal perforada, peritonitis localizada. La apendicitis neonatal puede presentarse en otras patologías como la enfermedad de Hirschsprung, la enterocolitis necrosante, el íleo o el tapón meconial, entre otras. La apendicitis se presenta como un cuadro clínico inespecífico, su diagnóstico se lo realiza como un hallazgo transoperatorio lo que eleva la mortalidad.

    Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Curcumin, an Asian spice and food-coloring agent, is known for its anti-oxidant properties. We propose that curcumin can improve diabetes-induced endothelial dysfunction through superoxide reduction.</p> <p>Methods</p> <p>Diabetes (DM) was induced in rats by streptozotocin (STZ). Daily curcumin oral feeding was started six weeks after the STZ injection. Twelve weeks after STZ injection, mesenteric arteriolar responses were recorded in real time using intravital fluorescence videomicroscopy. Superoxide and vascular protein kinase C (PKC-βII) were examined by hydroethidine and immunofluorescence, respectively.</p> <p>Results</p> <p>The dilatory response to acetylcholine (ACh) significantly decreased in DM arterioles as compared to control arterioles. There was no difference among groups when sodium nitroprusside (SNP) was used. ACh responses were significantly improved by both low and high doses (30 and 300 mg/kg, respectively) of curcumin supplementation. An oxygen radical-sensitive fluorescent probe, hydroethidine, was used to detect intracellular superoxide anion (O<sub>2</sub><sup>●-</sup>) production. O<sub>2</sub><sup>●- </sup>production was markedly increased in DM arterioles, but it was significantly reduced by supplementation of either low or high doses of curcumin. In addition, with a high dose of curcumin, diabetes-induced vascular PKC-βII expression was diminished.</p> <p>Conclusion</p> <p>Therefore, it is suggested that curcumin supplementation could improve diabetes-induced endothelial dysfunction significantly in relation to its potential to decrease superoxide production and PKC inhibition.</p

    Amyloid-b peptide on sialyl-LewisX-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface

    Get PDF
    Increased deposition of amyloid-b peptide (Ab) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer’s disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewisx (sLex) were employed to investigate Ab-altered mechanics of membrane tethers formed by bonding between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Ab to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Ab to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Ab lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Ab and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Ab were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Ab to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.This work was supported by Alzheimer Association Grant NIRG-06-24448; NIH Grant 1P01 AG18357, R21NS052385, 5R21AG032579 and in part by 1P01HL095486 and AHA 0835676N; ‘‘Bolashak’’ scholarship and Ministry of Education and Science of the Republic of Kazakhstan 1029/GF2. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Role of NAD(P)H Oxidase in Superoxide Generation and Endothelial Dysfunction in Goto-Kakizaki (GK) Rats as a Model of Nonobese NIDDM

    Get PDF
    Background: Cardiovascular disease is the leading cause of mortality in diabetics, and it has a complex etiology that operates on several levels. Endothelial dysfunction and increased generation of reactive oxygen species are believed to be an underlying cause of vascular dysfunction and coronary artery disease in diabetes. This impairment is likely the result of decreased bioavailability of nitric oxide (NO) within the vasculature. However, it is unclear whether hyperglycemia per se stimulates NADPH oxidase-derived superoxide generation in vascular tissue. Methods and Results: This study focused on whether NADPH oxidase-derived superoxide is elevated in vasculature tissue evoking endothelial/smooth muscle dysfunction in the hyperglycemic (16964 mg%) Goto-Kakizaki (GK) rat. By dihydroethidine fluorescence staining, we determined that aorta superoxide levels were significantly elevated in 9 month-old GK compared with age matched Wistar (GK; 19566%, Wistar; 10063.5%). Consistent with these findings, 10 26 mol/L acetylcholine-induced relaxation of the carotid artery was significantly reduced in GK rats compared with age matched Wistar (GK; 4167%, Wistar; 10065%) and measurements in the aorta showed a similar trend (p =.08). In contrast, relaxation to the NO donor SNAP was unaltered in GK compared to Wistar. Endothelial dysfunction was reversed by lowering of superoxide with apocynin, a specific Nox inhibitor. Conclusions: The major findings from this study are that chronic hyperglycemia induces significant vascular dysfunction i

    C-Kit Binding Properties of Hesperidin (a Major Component of KMP6) as a Potential Anti-Allergic Agent

    Get PDF
    Accumulation of mast cells can be causally related to several allergic inflammations. Stem cell factor (SCF) as a mast cell chemotaxin induces mast cell migration. To clarify a new effect of Pyeongwee-San extract (KMP6, a drug for indigestion) for the treatment of allergy, we investigated the effects of KMP6 on SCF-induced migration of rat peritoneal mast cells (RPMCs). A molecular docking simulation showed that hesperidin, a major component of KMP6, controls the SCF and c-kit binding by interaction with the active site of the c-kit. KMP6 and hesperidin significantly inhibited SCF-induced migration of RPMCs (P<0.05). The ability of the SCF to enhance morphological alteration and F-actin formation was also abolished by treatment with KMP6 or hesperidin. KMP6 and hesperidin inhibited SCF-induced p38 MAPK activation. In addition, SCF-induced inflammatory cytokine production was significantly inhibited by treatment with KMP6 or hesperidin (P<0.05). Our results show for the first time that KMP6 potently regulates SCF-induced migration, p38 MAPK activation and inflammatory cytokines production through hindrance of SCF and c-kit binding in RPMCs. Such modulation may have functional consequences during KMP6 treatment, especially mast cell-mediated allergic inflammation disorders

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P=1 × 10-4) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P=8.4 × 10-7). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies

    Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT

    Get PDF
    International audienceBackground: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. Methodology/Principal Findings: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200 ± 40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150 ± 80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. Conclusions: Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicit
    corecore