176 research outputs found
A polymerase chain reaction/ligase detection reaction fluorescent microsphere assay to determine Plasmodium falciparum MSP-119 haplotypes
The merozoite surface protein-1 (MSP-1) is a blood stage antigen currently being tested as a vaccine against Plasmodium falciparum malaria. Determining the MSP-1(19) haplotype(s) present during infection is essential for assessments of MSP-1 vaccine efficacy and studies of protective immunity in human populations. The C-terminal fragment (MSP-1(19)) has four predominant haplotypes based on point mutations resulting in non-synonymous amino acid changes: E-TSR (PNG-MAD20 type), E-KNG (Uganda-PA type), Q-KNG (Wellcome type), and Q-TSR (Indo type). Current techniques using direct DNA sequencing are laborious and expensive. We present an MSP-1(19) allele-specific polymerase chain reaction (PCR)/ligase detection reaction-fluorescent microsphere assay (LDR-FMA) that allows simultaneous detection of the four predominant MSP-1(19) haplotypes with a sensitivity and specificity comparable with other molecular methods and a semi-quantitative determination of haplotype contribution in mixed infections. Application of this method is an inexpensive, accurate, and high-throughput alternative to distinguish the predominant MSP-1(19) haplotypes in epidemiologic studies
Broadly reactive antibodies specific for Plasmodium falciparum MSP-119 are associated with the protection of naturally exposed children against infection
BACKGROUND: The 19 kDa C-terminal region of Plasmodium falciparum Merozoite Surface Protein-1 is a known target of naturally acquired humoral immunity and a malaria vaccine candidate. MSP- 119 has four predominant haplotypes resulting in amino acid changes labelled EKNG, QKNG, QTSR and ETSR. IgG antibodies directed against all four variants have been detected, but it is not known if these variant specific antibodies are associated with haplotype-specific protection from infection.
METHODS: Blood samples from 201 healthy Kenyan adults and children who participated in a 12-week treatment time-to-infection study were evaluated. Venous blood drawn at baseline (week 0) was examined for functional and serologic antibodies to MSP-119 and MSP-142 variants. MSP-119 haplotypes were detected by a multiplex PCR assay at baseline and weekly throughout the study. Generalized linear models controlling for age, baseline MSP-119 haplotype and parasite density were used to determine the relationship between infecting P. falciparum MSP-119 haplotype and variant-specific antibodies.
RESULTS: A total of 964 infections resulting in 1,533 MSP-119 haplotypes detected were examined. The most common haplotypes were EKNG and QKNG, followed by ETSR and QTSR. Children had higher parasite densities, greater complexity of infection (\u3e1 haplotype), and more frequent changes in haplotypes over time compared to adults. Infecting MSP-119 haplotype at baseline (week 0) had no influence on haplotypes detected over the subsequent 11 weeks among children or adults. Children but not adults with MSP-119 and some MSP-142 variant antibodies detected by serology at baseline had delayed time-to-infection. There was no significant association of variant-specific serology or functional antibodies at baseline with infecting haplotype at baseline or during 11 weeks of follow up among children or adults.
CONCLUSIONS: Variant transcending IgG antibodies to MSP-119 are associated with protection from infection in children, but not adults. These data suggest that inclusion of more than one MSP-119 variant may not be required in a malaria blood stage vaccine
The Feasibility of a Behavioral Group Intervention after Weight-loss Surgery: A Randomized Pilot Trial
BACKGROUND: Formal psychosocial support programs after weight-loss surgery are limited in scope and availability.
OBJECTIVE: This randomized pilot study evaluated the feasibility of a postoperative behavioral intervention program.
MATERIALS AND METHODS: Postoperative weight-loss surgery patients (N = 50) were recruited from February 2017-July 2017 and randomized to a four-month behavioral program or usual care wait-list. Outcomes evaluated in addition to feasibility included health-related quality of life (Short Form -36), psychosocial functioning and adherence. Secondary outcomes included within-group changes for each outcome.
RESULTS: Out of eight possible sessions, intervention participants attended a mean of 4.2 sessions. Intervention group participants experienced greater improvements in the social functioning domain of health-related quality of life compared to usual care. Self-reported dietary adherence in the intervention group remained stable, while usual care group dietary adherence declined. Within the intervention group, participants also reported gains in the physical function, pain and general health aspects of quality life from baseline to post-treatment. No differences in weight, mood or other eating behaviors (e.g., loss of control, emotional eating) were evident between groups.
CONCLUSION: Though participation in a postoperative behavioral intervention varied, the program helped participants to maintain aspects of quality of life and self-reported adherence to dietary recommendations.
TRIAL REGISTRATION: ClinicalTrials.gov NCT03092479
Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior
Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, MartΓn Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Instituto de Investigaciones en IngenierΓa GenΓ©tica y BiologΓa Molecular "Dr. HΓ©ctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido
Antiepileptic drugsβ tolerability and safety β a systematic review and meta-analysis of adverse effects in dogs
<p>Various anti-epileptic drugs (AEDs) are used for the management of idiopathic epilepsy (IE) in dogs. Their safety profile is an important consideration for regulatory bodies, owners and prescribing clinicians. However, information on their adverse effects still remains limited with most of it derived from non-blinded non-randomized uncontrolled trials and case reports.</p><p><span>This poster won third place, which was presented at the Veterinary Evidence Today conference, Edinburgh November 1-3, 2016.Β </span></p><br /> <img src="https://www.veterinaryevidence.org/rcvskmod/icons/oa-icon.jpg" alt="Open Access" /
Putative imprinted gene expression in uniparental bovine embryo models
Altered patterns of gene expression and the imprinted status of genes have a profound effect on cell physiology and can markedly alter embryonic and fetal development. Failure to maintain correct imprinting patterns can lead to abnormal growth and behavioural problems, or to early pregnancy loss. Recently, it has been reported that the Igf2R and Grb10 genes are biallelically expressed in sheep blastocysts, but monoallelically expressed at Day 21 of development. The present study investigated the imprinting status of 17 genes in in vivo, parthenogenetic and androgenetic bovine blastocysts in order to determine the prevalence of this unique phenomenon. Specifically, the putatively imprinted genes Ata3, Impact, L3Mbtl, Magel2, Mkrn3, Peg3, Snrpn, Ube3a and Zac1 were investigated for the first time in bovine in vitro fertilised embryos. Ata3 was the only gene not detected. The results of the present study revealed that all genes, except Xist, failed to display monoallelic expression patterns in bovine embryos and support recent results reported for ovine embryos. Collectively, the data suggest that monoallelic expression may not be required for most imprinted genes during preimplantation development, especially in ruminants. The research also suggests that monoallelic expression of genes may develop in a gene- and time-dependent manner
H3K9me2/3 Binding of the MBT Domain Protein LIN-61 Is Essential for Caenorhabditis elegans Vulva Development
MBT domain proteins are involved in developmental processes and tumorigenesis. In vitro binding and mutagenesis studies have shown that individual MBT domains within clustered MBT repeat regions bind mono- and dimethylated histone lysine residues with little to no sequence specificity but discriminate against the tri- and unmethylated states. However, the exact function of promiscuous histone methyl-lysine binding in the biology of MBT domain proteins has not been elucidated. Here, we show that the Caenorhabditis elegans four MBT domain protein LIN-61, in contrast to other MBT repeat factors, specifically interacts with histone H3 when methylated on lysine 9, displaying a strong preference for di- and trimethylated states (H3K9me2/3). Although the fourth MBT repeat is implicated in this interaction, H3K9me2/3 binding minimally requires MBT repeats two to four. Further, mutagenesis of residues conserved with other methyl-lysine binding MBT regions in the fourth MBT repeat does not abolish interaction, implicating a distinct binding mode. In vivo, H3K9me2/3 interaction of LIN-61 is required for C. elegans vulva development within the synMuvB pathway. Mutant LIN-61 proteins deficient in H3K9me2/3 binding fail to rescue lin-61 synMuvB function. Also, previously identified point mutant synMuvB alleles are deficient in H3K9me2/3 interaction although these target residues that are outside of the fourth MBT repeat. Interestingly, lin-61 genetically interacts with two other synMuvB genes, hpl-2, an HP1 homologous H3K9me2/3 binding factor, and met-2, a SETDB1 homologous H3K9 methyl transferase (H3K9MT), in determining C. elegans vulva development and fertility. Besides identifying the first sequence specific and di-/trimethylation binding MBT domain protein, our studies imply complex multi-domain regulation of ligand interaction of MBT domains. Our results also introduce a mechanistic link between LIN-61 function and biology, and they establish interplay of the H3K9me2/3 binding proteins, LIN-61 and HPL-2, as well as the H3K9MT MET-2 in distinct developmental pathways
Chimpanzee and Human Y Chromosomes Are Remarkably Divergent in Structure and Gene Content
LetterThe human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome[1, 2]. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis [3, 4]. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes [5, 6, 7, 8], but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6βmillion years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, βgenetic hitchhikingβ effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.National Institutes of Health (U.S.)Howard Hughes Medical Institut
Evidence for Restriction of Ancient Primate Gammaretroviruses by APOBEC3 but Not TRIM5Ξ± Proteins
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5Ξ± and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a βfossil recordβ of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5Ξ± proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host speciesβdependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses
- β¦