24 research outputs found

    Interactions between marine megafauna and plastic pollution in Southeast Asia

    Get PDF
    Southeast (SE) Asia is a highly biodiverse region, yet it is also estimated to cumulatively contribute a third of the total global marine plastic pollution. This threat is known to have adverse impacts on marine megafauna, however, understanding of its impacts has recently been highlighted as a priority for research in the region. To address this knowledge gap, a structured literature review was conducted for species of cartilaginous fishes, marine mammals, marine reptiles, and seabirds present in SE Asia, collating cases on a global scale to allow for comparison, coupled with a regional expert elicitation to gather additional published and grey literature cases which would have been omitted during the structured literature review. Of the 380 marine megafauna species present in SE Asia, but also studied elsewhere, we found that 9.1 % and 4.5 % of all publications documenting plastic entanglement (n = 55) and ingestion (n = 291) were conducted in SE Asian countries. At the species level, published cases of entanglement from SE Asian countries were available for 10 % or less of species within each taxonomic group. Additionally, published ingestion cases were available primarily for marine mammals and were lacking entirely for seabirds in the region. The regional expert elicitation led to entanglement and ingestion cases from SE Asian countries being documented in 10 and 15 additional species respectively, highlighting the utility of a broader approach to data synthesis. While the scale of the plastic pollution in SE Asia is of particular concern for marine ecosystems, knowledge of its interactions and impacts on marine megafauna lags behind other areas of the world, even after the inclusion of a regional expert elicitation. Additional funding to help collate baseline data are critically needed to inform policy and solutions towards limiting the interactions of marine megafauna and plastic pollution in SE Asia

    Interactions between marine megafauna and plastic pollution in Southeast Asia

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Southeast (SE) Asia is a highly biodiverse region, yet it is also estimated to cumulatively contribute a third of the total global marine plastic pollution. This threat is known to have adverse impacts on marine megafauna, however, understanding of its impacts has recently been highlighted as a priority for research in the region. To address this knowledge gap, a structured literature review was conducted for species of cartilaginous fishes, marine mammals, marine reptiles, and seabirds present in SE Asia, collating cases on a global scale to allow for comparison, coupled with a regional expert elicitation to gather additional published and grey literature cases which would have been omitted during the structured literature review. Of the 380 marine megafauna species present in SE Asia, but also studied elsewhere, we found that 9.1 % and 4.5 % of all publications documenting plastic entanglement (n = 55) and ingestion (n = 291) were conducted in SE Asian countries. At the species level, published cases of entanglement from SE Asian countries were available for 10 % or less of species within each taxonomic group. Additionally, published ingestion cases were available primarily for marine mammals and were lacking entirely for seabirds in the region. The regional expert elicitation led to entanglement and ingestion cases from SE Asian countries being documented in 10 and 15 additional species respectively, highlighting the utility of a broader approach to data synthesis. While the scale of the plastic pollution in SE Asia is of particular concern for marine ecosystems, knowledge of its interactions and impacts on marine megafauna lags behind other areas of the world, even after the inclusion of a regional expert elicitation. Additional funding to help collate baseline data are critically needed to inform policy and solutions towards limiting the interactions of marine megafauna and plastic pollution in SE Asia.National Research Foundation, Prime Minister’s Office (Singapore) and the Natural Environment Research Council (United Kingdom)National Research Foundation, Prime Minister’s Office (Singapore) and the Natural Environment Research Council (United Kingdom

    Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems

    Get PDF
    BackgroundThe DNA methylation profile of mammalian cell lines differs from the primary tissue from which they were derived, exhibiting increasing divergence from the in vivo methylation profile with extended time in culture. Few studies have directly examined the initial epigenetic and transcriptional consequences of adaptation of primary mammalian cells to culture, and the potential mechanisms through which this epigenetic dysregulation occurs is unknown.ResultsWe demonstrate that adaptation of mouse embryonic fibroblast, MEFS, to cell culture results in a rapid reprogramming of epigenetic and transcriptional states. We observed global 5-hydroxymethylcytosine (5hmC) erasure within three days of culture initiation. Loss of genic 5hmC was independent of global 5-methylcytosine (5mC) levels and could be partially rescued by addition of Vitamin C. Significantly, 5hmC loss was not linked to concomitant changes in transcription. Discrete promoter-specific gains of 5mC were also observed within seven days of culture initiation. Against this background of global 5hmC loss we identified a handful of developmentally important genes that maintained their 5hmC profile in culture, including the imprinted loci Gnas and H19. Similar outcomes were identified in the adaption of CD4+ T-cells to culture.ConclusionsWe report a dramatic and novel consequence of adaptation of mammalian cells to culture in which global loss of 5hmC occurs; suggesting rapid concomitant loss of methylcytosine dioxygenase activity. The observed epigenetic and transcriptional re-programming occurs much earlier than previously assumed, and has significant implications for the use of cell lines as faithful mimics of in vivo epigenetic and physiological processes.We thank Professors Adrian Bird and Nicholas Hastie for their comments on our manuscript. JT and RO are funded by IMI-MARCAR (under grant agreement number (115001) (MARCAR project)). Work in RM's lab is supported by the MRC, IMI-MARCAR and the BBSRC. This work in RM's lab was also initially funded by the Breakthrough Breast Cancer charity. Work in MB's lab was supported by Linkoping University strategic research funding and the Ake Wibergs fund (3772738). Work in SP's lab is supported by the BBSRC.</p

    The Influence of a Tropical Climate with a Long Dry Season on Goat Semen Quality and Seminal Fluid Change in the Kanchanaburi Province, Thailand

    Get PDF
    At present, there is no information about the difference between the three seasons with a long dry period, such as Kanchanaburi province, Thailand, on goat semen quality. This study observed the climate and daytime length effects of a long dry period in three seasons in a tropical climate country on goat semen quality and seminal fluid change. The semen was collected from eight male goats once a month for one year. The libido score was assessed during semen collection. Semen volume, semen sediment volume, percentage of seminal fluid volume, seminal fluid protein, mass movement, motility, concentration, and spermatozoa membrane integrity were evaluated. Libido scores were not different between the seasons. Semen volume, seminal fluid volume, and seminal fluid protein concentration in the rainy season were significantly higher (p&lt;0.05) than in the summer and winter. Semen sediment volume was relatively stable in all seasons and months. Meanwhile, the concentration was significantly higher (p&lt;0.05) in the summer and winter than in the rainy season. In summer and winter, spermatozoa motility and normal spermatozoa membrane were significantly higher (p&lt;0.05) than in the rainy season. In conclusion, temperature, THI, and daytime changes in tropical climate countries with long dry seasons were unrelated to semen quality, seminal fluid change, and sexual behavior. But the increase in humidity in the rainy season after long dry seasons has dropped semen quality, resulting from increased volume and protein levels in seminal fluid

    98 HETEROCHROMATIN REPROGRAMMING IN MOUSE EARLY DEVELOPMENT

    No full text
    corecore