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Abstract 16 

Epigenetic and chromatin modifications have important roles in governing gene activity and 17 

nuclear architecture. They are also necessary for normal embryonic development and cell 18 

differentiation. Early epigenetic programming events during mouse embryogenesis are believed 19 

to be essential for normal growth and development. Aberrant epigenetic profiles are associated 20 
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with the conversion of normal cell phenotypes into cancer cells. Because epigenetic alterations 21 

are potentially reversible, experimental progress in this area may offer great promise for new 22 

cancer therapy. Nuclear epigenetic profiles can be manipulated using techniques such as somatic 23 

cell reprogramming, genetic engineering and small molecules, which can reprogramme the cell 24 

towards dedifferentiation and transdifferentiation. Advances into the mechanisms will improve 25 

the potential for regenerative medicine. In this review, we describe the principles of epigenetics 26 

and its relation to cell reprogramming, differentiation, dedifferentiation and transdifferentiation. 27 

Keywords: Epigenetics, Reprogramming, Differentiation, Dedifferentiation, 28 

Transdifferentiation, Cancer 29 

 30 

Review methodology 31 

Literature was sourced from PubMed, Google Scholar and Web of Science; journal publishers; 32 

meeting reports and communications from colleagues. In addition to these articles, we checked 33 

references cited by the authors for additional relevant material.  34 

 35 

Epigenetic definitions 36 

Epigenetics describes the phenomena between genotype and phenotype that can alter the 37 

phenotypic outcome associated with genomic loci in the absence of changes to the underlying 38 

DNA sequence [1]. For example, the majority of cells in our body share an identical genotype 39 

originally derived from the first single cell after fertilisation, the zygote, yet these cells can have 40 

different morphologies and functions. During development, cells eventually generate a diversity 41 
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of disparate and stable cell types in a process called cellular differentiation. These transitions 42 

were first envisioned by Waddington as being governed by changes in trajectory across a 43 

conceptual ‘epigenetic landscape’, rather than by alterations in genetic inheritance [2]. In 44 

molecular terms, epigenetics is defined as the study of any potentially stable and heritable 45 

change in gene expression or cellular phenotype that occurs without altering the DNA sequence 46 

of the cell lineage [1]. The mechanisms can involve covalent modification marks on histones and 47 

DNA or non-coding RNAs (ncRNAs) [3-5]. ncRNAs are transcribed from DNA but are not 48 

translated into proteins; those ncRNAs that appear to be involved in epigenetic processes [6] can 49 

mediate non-mendelian inheritance of an epigenetic change [7].  50 

Epigenetic modifications include the methylation states of cytosine residues of DNA and 51 

posttranslational methylation groups on the histone proteins associated with the DNA.  Co-52 

regulator proteins with binding domains for these chemical groups may associate with these 53 

epigenetic marks and affect the activity of nearby genes [8, 9]. The specific combination of 54 

epigenetic modifications may furthermore determine the conformation of the chromatin fibre 55 

into which the DNA and histones are packaged, and can thereby regulate the transcriptional 56 

potential of the underlying genes [4, 10]. This is based on the notion that repression of gene 57 

expression is caused by a lack of accessibility to the gene by the RNA polymerase [11], as well 58 

as its recruitment [12].  59 

During development as well as in adult life, an interplay exists between the environment and 60 

genome; however, the currently known framework of gene–environment interactions is not 61 

sufficient to fully explain the risks of common diseases, some of which appear modulated by 62 

epigenetic mechanisms [13]. Many environmental factors have been implicated in aberrant 63 

epigenetic changes both in experimental and epidemiological studies [14]. These environmental 64 

epigenetic modulators include nutrients, oxygen, temperature, radiation, pollution, chemicals and 65 
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toxins [13-17]. Specific epigenetic modifications and transcriptional profiles have been shown to 66 

have a dynamic potential for rapidly adapting to culture conditions [17, 18] 67 

DNA methylation  68 

DNA methylation involves the addition of a methyl group to CpG sequences at the 5’ position of 69 

the cytosine ring (5-methylcytosine; 5mC). This modification, which occurs in the DNA of most 70 

but not all eukaryotes, is catalysed by DNA methyltransferases (Dnmt) and is generally 71 

associated with gene repression [3, 9, 11]. The repression mechanisms can act through direct 72 

interference by the methyl group or involve a family of methyl binding proteins and associated 73 

complexes in vertebrates [9]. DNA methylation can occur in two ways: de novo methylation 74 

relies on Dnmt3a and Dnmt3b enzymes that add new methyl groups to CpG sequences; whereas 75 

methylation maintenance requires Dnmt1 to restore methyl groups to hemi‐methylated CpG 76 

sequences following DNA replication [3, 12]. DNA methylation can be further modified, as part 77 

of a presumed active demethylation mechanism, by the Tet family of enzymes converting 5mC 78 

to 5-hydroxymethylcytosine (5hmC) and its higher oxidative products 5-formylcytosine (5fC) 79 

and 5-carboxylcytosine (5caC) [19-21]. 80 

Histone methylation 81 

Post-translational modifications can be found on the histone protein globular core regions, 82 

around which DNA is wrapped [22]. However, the majority of histone modifications occur on 83 

the lysine-rich N-terminal amino acid “tails” extending from the nucleosome structure [8]. These 84 

include: acetylation, phosphorylation, sumoylation, ubiquitination and methylation [23]. 85 

Methylation of histones is an epigenetically heritable histone modification found on lysine (K) or 86 

arginine (R) residues, produced by a family of histone methyltransferases (HMTs). Conversely, 87 

histone demethylases work to remove methyl groups from these residues [8]. Histone lysine 88 

residues can be mono- (me), di- (me2), or tri-methylated (me3); each of these posttranslational 89 
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modifications can have a decisive influence on gene and chromatin functions [24]. For instance, 90 

H3K9me3 represses gene transcription and assists in the formation of constitutive 91 

heterochromatin, while H3K9me2 represses genes in euchromatin as well as forming facultative 92 

heterochromatin [25]. Modifications of histone lysine can act as either repressive or active 93 

marks. For example, methylations of H3K4, H3K36 and H3K79 have been highly correlated 94 

with transcriptional activation, whereas methylations of H3K9, H3K27 and H4K20 are 95 

associated with repressive chromatin states [26, 27]. The repression mechanisms typically 96 

involve protein complexes with binding modules for these methyl groups [8]. This has led to a 97 

model describing the proteins involved in histone modification management as ‘writers, erasers 98 

and readers’, in an analogy with other signalling pathways [28]. 99 

Methylation of histone arginine residues by arginine methyltransferases (PRMTs) is less 100 

extensively studied but it has been found to play significant roles in gene regulation, 101 

development and cancer [29]. Histone arginine methylation can be transcriptionally activating 102 

[30] or repressive [31] depending on the target residue, and on whether the methylation is 103 

symmetric or asymmetric. In mammals, PRMT1- and CARM1-catalysed histone asymmetric 104 

histone dimethylation at arginine is involved in gene activation [30] while PRMT5-catalyzed 105 

symmetric histone dimethylated arginine is associated with gene repression [31]. 106 

Epigenetics and differentiation. 107 

In developmental biology, cellular differentiation is the process by which a less specialized cell 108 

(stem cell or progenitor) becomes a more specialized cell type. Differentiation can dramatically 109 

change a cell's morphology and function, as a result of alterations in gene expression with the 110 

involvement of epigenetic modifications [32, 33]. Differentiation occurs numerous times during 111 

development and continues into adulthood, as adult stem cells divide and create fully 112 

differentiated daughter cells during tissue repair and during normal cell turnover [34]. In cancer, 113 
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the differentiation state (sometimes referred as redifferentiation) is used in grading tumours to 114 

assess cancer progression, by comparing the genotype and phenotype of cancer tissue to normal 115 

tissue. Well-differentiated cancer cells are comparable to normal cells, in that they grow and 116 

spread more slowly than poorly differentiated or undifferentiated cancer cells [35, 36].  117 

Each cell population is thought to have its own characteristic epigenetic signature, which 118 

correlates with its differentiation potential. Mammalian development is a unidirectional process 119 

during which there is a progressive loss of developmental potential. It begins with the formation 120 

of a unicellular zygote and ends with the establishment of more than 200 specialized cell types of 121 

the mammalian body [37]. According to this diminishing differentiation potential, specific terms 122 

have been assigned to the individual cell populations that arise during development, such as: 123 

totipotency (ability to differentiate into intraembryonic tissue and extraembryonic tissue), 124 

pluripotency (ability to differentiate into intraembryonic tissue; ectoderm, mesoderm and 125 

endoderm), multipotency (ability to differentiate into two or more lineages) and unipotency 126 

(ability to differentiate to one lineage).  127 

It is thought that at specific stages in development and differentiation, biologically important 128 

differences in the ‘openness’ of chromatin occur. For example, chromatin in preimplantation 129 

embryos is more open than in postimplantation cells, while stem cell chromatin is less compact 130 

and more transcription-permissive than that of differentiated cells [18, 38]. Open chromatin 131 

structure, characterized by relatively few condensed heterochromatin areas, has a higher 132 

proportion of active epigenetic marks (i.e., H3K4me3, H3K39me and H3K79me) compared to 133 

repressive epigenetic marks (i.e., H3K9me, H4K20me and DNA methylation) [39]. In addition, 134 

developmental genes can be ‘bivalent’, marked by both the active epigenetic mark H3K4me3 135 

and the repressive epigenetic mark H3K27me3, which signifies genes that are silent but 136 

transcriptionally poised for activation [40, 41]. The bivalent histone modification patterns 137 
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disappear after cell differentiation, when most stemness genes are repressed in association with 138 

repressive epigenetic marks while specific differentiated genes become activated [40, 42]. At the 139 

same time, heterochromatin spreading takes place and chromatin plasticity is diminished [38, 140 

43]. 141 

Reprogramming, dedifferentiation and transdifferentiation. 142 

Unlike in lower vertebrates, reprogramming, dedifferentiation and transdifferentiation rarely 143 

occur naturally in mammals. However, under certain experimental conditions, differentiated cells 144 

can revert into a less differentiated state, in a dedifferentiation process induced by nuclear/cell 145 

reprogramming. Examples include the generation of induced pluripotent stem cells (iPSC) [44], 146 

or the creation of a totipotent embryo derived from somatic cell nuclear transfer (SCNT) [45]. 147 

Reprogramming also describes the conversion of one differentiated cell type into another, for 148 

instance of a B lymphocyte into a macrophage [46], or a fibroblast into a cardiac muscle cell 149 

[47], following the induced expression of defined transcription factors. Because these two 150 

examples of cell fate change may not involve a gain in differentiation potential, the term `lineage 151 

conversion' or `transdifferentiation' is currently used to describe these processes. Moreover, 152 

cellular dedifferentiation has also been implicated in cancer. As cancer can only be established 153 

from cells that have the potential to divide, and not terminally differentiated cells, one theory 154 

suggests that tumours may arise from the unrestrained growth of dedifferentiated cells that 155 

resemble embryonic or stem cells [48]. 156 

In molecular terms, cell reprogramming describes the molecular changes that cells undergo as 157 

their fate changes. Epigenetic reprogramming has been used to describe certain nuclear 158 

epigenetic changes that occur irrespective of changes to the differentiation state of cells, such as 159 

the DNA and histone methylation changes after fertilisation [49, 50], during germ cell 160 

maturation [51], dedifferentiation [37] and transdifferentiation [52]. 161 
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Epigenetic patterns can be inherited within cell lineages, as well as being dynamic during early 162 

development. Most somatic DNA and histone methylation modifications are erased during germ 163 

cell development [53, 54] and preimplantation stages [55], and are subsequently reinstated 164 

during pre and postimplantation [18, 32, 50]. It is thought that the erasure of ‘epigenetic 165 

memory’ is required for proper development, while incomplete and aberrant epigenetic 166 

reprogramming may cause developmental arrest and abnormalities [56-58].  167 

Manipulation of epigenetic profiles. 168 

Mechanisms of endogenous origin, as well as exogenous factors can be used to manipulate 169 

nuclear epigenetic profiles, and can in this way alter cell fate. Techniques include nuclear 170 

transfer [59], cell fusion [60], cell treatment with other cell extracts [61] or small molecules [62], 171 

and over expression of specific genes [63]. Such epigenetic reprogramming strategies may be 172 

useful for future therapies, for example in the treatment of cancers and mental retardation which 173 

have epigenetic abnormalities [64, 65]. Cell fate reprogramming strategies are already employed 174 

in disease modelling and have potential for regenerative medicine approaches aimed at tissue 175 

renewal [66]. Veterinary applications extend further into transgenic animal generation, drug 176 

development, and the preservation of biological diversity [67].  177 

Somatic cell nuclear transfer (SCNT) experiments in amphibians, and subsequently in sheep and 178 

other mammals, first demonstrated that it is possible to generate an adult cloned animal from a 179 

differentiated cell, albeit at low efficiency. [45, 68, 69]. Studies in different species using the 180 

nuclear transfer technique have shown that eggs or oocytes have the ability to erase somatic 181 

epigenetic patterns (epigenetic memory) of the donor nucleus and replace these with embryonic 182 

marks, leading to the development of pluripotent stem cells that are functionally equivalent to 183 

those derived from fertilized embryos. However, incomplete reprogramming by nuclear transfer 184 

may result in failure of full term development [58, 69-71].  185 
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Epigenetics in iPSC reprogramming. 186 

In a major advance demonstrating that cell reprogramming capability is not restricted to oocytes, 187 

ectopic expression or introduction of recombinant proteins of the pluripotency transcription 188 

factors (Oct4, Sox2, Klf4, Myc, Nanog, Lin28) was shown to be sufficient for reprogramming of 189 

a small proportion of somatic cells into a pluripotent state in mouse [44] and human cells [68]. 190 

These iPSCs are also in many respects similar to natural pluripotent embryonic stem cells 191 

(ESCs), such as the expression of certain stem cell genes and proteins, chromatin methylation 192 

patterns, doubling time, embryoid body formation, teratoma formation, and viable chimera 193 

formation, as well as potency and differentiability. Genomic mapping studies show that iPSC 194 

techniques can induce global epigenetic reprogramming of differentiated cells (fibroblasts) 195 

towards a pluripotent cell epigenome [63, 68]. The iPSC methodology permits the derivation of 196 

either patient-specific or disease-specific pluripotent cells. These cells can be used for drug 197 

screening, and as a model for the pathogenesis of degenerative diseases such as Alzheimer’s, 198 

Parkinson’s or multiple sclerosis, as well as having potential for cell therapy [72]. The study of 199 

iPS cells that are corrected for a gene mutation to rescue sickle cell anaemia and thalassemia in 200 

mouse models has demonstrated ‘proof of principle’ for the use of iPSC combined with gene 201 

therapy for disease treatment [73, 74]. Nevertheless, analysis of human iPSC lines suggests that 202 

variability in differentiation potential and the epigenetic control of cancer dedifferentiation 203 

during cell reprogramming need to be better understood prior to application in regenerative 204 

medicine [75, 76].  205 

Cell reprogramming in veterinary pre-clinical models and agriculture. 206 

Mouse models suggest treatment of a number of common degenerative diseases is possible using 207 

transplanted induced pluripotent stem cells. Mice lack physiological similarity with humans, 208 

however; while targeted gene mutation in mouse often fails to reproduce human phenotypes [77]. 209 
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Interest in the use of iPSCs in large animal pre-clinical models for disease modelling has ranged 210 

from rhesus monkey (pancreatic insulin-producing cells for diabetes), pig (rod photoreceptor 211 

cells for retinal disease; endothelial cells for cardiovascular disease), dog (endothelial cells), to 212 

macaque (dopaminergic neurons for Parkinsons disease). By filling the gaps between laboratory 213 

findings in the mouse and clinical trials in humans, domestic animal models are therefore 214 

invaluable for testing the safety and potential of iPSCs [67]. Interestingly, while somatic cell 215 

reprogramming to iPSCs in many species has relied on over-expression of the conserved 216 

Yamanaka set of transcription factors, additional steps are likely needed here to achieve a true 217 

pluripotent state with competence for germ-line transmission [67, 78]. Epigenetic modifications 218 

are evolutionary conserved but some variation exists between species in the modifying enzymes 219 

and binding protein homologues involved [9]. Overall, iPSC and ES cell technology have been 220 

mainly limited to rodents and humans. Instead, SCNT cell reprogramming technology has 221 

continued to deliver live births in a range of species including transgenic production in farm 222 

animals for potential agricultural applications [77]. 223 

Epigenetic inhibitors. 224 

In the last decade, a variety of small molecules have been created and discovered, some of which 225 

have the potential to alter epigenetic marks resulting in cell differentiation, transdifferentiation 226 

and dedifferentiation. Early examples include DNA demethylating agents such as 5-azacytidine 227 

(5-AzaC), which is a cytosine analogue that can cause extensive global DNA demethylation and 228 

reduce DNA methyltransferase activity in the cells [79, 80]. It was originally developed as an 229 

antitumor agent, and has been useful in the treatment of leukaemia and myelodysplastic 230 

syndrome [79, 81]. The effect of 5-AzaC is unpredictable, as it may cause dedifferentiation [82], 231 

differentiation [83] or transdifferentiation [84]. Other types of modifiers include histone 232 

deacetylase (HDAC) inhibitors such as valproic acid (VPA) and trichostatin (TSA). VPA has 233 
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been utilised for decades as a treatment for epilepsy, as a mood stabiliser and in migraine 234 

therapy, while TSA is currently applied as an anticancer medicine [85, 86]. It has been shown 235 

that both VPA and TSA can inhibit HDACs and then trigger active global demethylation of the 236 

mammalian epigenome, causing reprogramming of gene expression [87]. VPA and TSA induce 237 

dedifferentiation by enhancing epigenetic reprogramming in iPSC and SCNT technologies [88-238 

90]. Moreover, VPA and TSA can induce redifferentiation in cancer, causing growth inhibition 239 

and apoptosis [91, 92]. 240 

In addition, histone methylation inhibitors such as BIX-01294 (a diazepin-quinazolin-amine 241 

derivative) have been demonstrated to selectively impair G9a (Ehmt2) HMTs and levels of 242 

H3K9me2 [93]. A combination of BIX-01294 with defined factors (chromatin remodellers) 243 

could increase the cellular and epigenetic reprogramming rate of iPSC methodology [94]. 244 

Epigenetic modifier enzyme roles in differentiation in development and disease. 245 

Gene knockdown and knockout technologies in both in vivo and in vitro studies have revealed 246 

that mammalian development and differentiation requires both DNA/histone methylation (see 247 

table 1) and demethylation (see table 2). Most of the DNA and histone methyltransferases are 248 

important for normal embryonic development and differentiation. Conversely, most demethylase 249 

knockout embryos can survive until birth but cell differentiation is affected.  250 

Epigenetic modifiers are therefore essential and their defects are strongly linked to 251 

dedifferentiation towards stem cells or cancer (see table 1 and 2). The tables show that modifiers 252 

related to formation of heterochromatin, such as Suv39h, Suv420h, Dmnt1 and Dnmt3l, tend to 253 

act as repressors for dedifferentiation (table 1), whereas histone demethylases Jmjd1 and Jmjd2 254 

act as activators (table 2). H3K4 histone methyl transferases tend to activate cell reprogramming 255 

towards stem cells, but repress cancer (table 1). The important roles played in various 256 
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differentiation aspects identify these enzymes as potential drug targets for treating disease 257 

phenotypes and in regenerative reprogramming. 258 

Conclusion/Summary. 259 

In this review, we conclude that epigenetic marks are important for development, differentiation 260 

and that their dysregulation can cause dedifferentiation. Each cell phenotype has a unique 261 

epigenetic signature, which undergoes alteration when the cells are differentiated, 262 

transdifferentiated or dedifferentiated. Manipulation of epigenetic mechanisms can help control 263 

cell phenotypic outcomes in disease, and in this capacity can be useful for medicine and 264 

veterinary medicine, while animal production from reprogrammed somatic cells can find use in 265 

agriculture and animal conservation. The detailed information that is now available on the 266 

epigenomic maps (http://www.roadmapepigenomics.org/) from different adult and embryonic 267 

tissues, cross-referenced with disease states will provide the roadmap to these goals, as well as 268 

advancing our understanding of underlying epigenetic processes [95-97]. 269 

 270 

 271 
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Table 1 The importance of histone lysine methyltransferase and DNA methyltransferase for development, 941 
differentiation, cell reprogramming (SCNT and iPSC) and cancer. 942 

Site Enzyme 
Embryonic 

Lethality 

Abnormal 

differentiation Cell reprogramming Cancer Reference 

H3K4 
Setd1a/ 
Kmt2f 

Yes 
(E7.5) 

No - 
Activating 

(leukaemia) 
[98, 99] 

 
Setd1b/ 

Kmt2g 

Yes  

(E11.5) 
No - 

Repressive 

(squamous cell carcinoma) 

[98, 100]  

 
Mll/ 
Kmt2a 

Yes  
(E11.5) 

Yes 
(blood) 

Enhance 
Repressive 

(prostate carcinoma) 
[101-105] 

 
Kmt2b/ 

Mll4 

Yes  

(E10.5) 

Yes 

(heart) 
Enhance 

Repressive 

(squamous cell carcinoma) 

[103, 106-109] 

 
Mll3/ 

Kmt2c 
No 

Yes 

(blood) 
Enhance 

Repressive 

(myeloid leukemia) 

[103, 110-112]  

 
Kmt2d/ 

Mll2 
No 

Yes 

(heart) 
Enhance 

Repressive 

(lung cancer) 

[108, 109, 113, 

114] 

 
Kmt2e/ 

Mll5 
No 

Yes 

(heart) 
-  

Repressive 

(prostate carcinoma) 

[103, 115, 116] 

 
Setd7/ 

Kmt7 
No 

Yes 

(neuron) 
Inhibit 

Repressive 

(prostate cancer) 

[117-120] 

 
Smyd3/ 

Kmt3e 
- 

Yes 

(muscle) 
Enhance 

Activating 

(hepatocellular carcinomas) 

[121-123]  

H3K9 
Ehmt1/ 

Kmt1d 

Yes 

(E9.5) 

Yes 

(fat) 
Enhance 

Activating 

(parotid gland tumour) 

[124-127] 

 
Ehmt2/ 

Kmt1c 

Yes 

(E9.5) 

Yes 

(blood) 
Enhance 

Activating 

(lung cancer) 

[124, 126, 128-

130] 

 
Eset/ 

Kmt1e 

Yes 

(E8.5) 

Yes 

(bone) 
Enhance 

Activating 

(parotid gland tumour) 

[126, 127, 131, 

132] 

 
Suv39h1,2/ 

Kmt1a,b 

Yes 

(E14.5) 

Yes 

(muscle) 
Inhibit 

Repressive 

(alveolar rhabdomyosarcoma) 
[126, 133-136] 

 
Prdm2/ 

Kmt8/ 
No 

Yes 

(blood) 
- 

Repressive 

(B-cell lymphoma) 

[137, 138] 

 
Setdb2/ 

Kmt1f/ 
- - Enhance - 

[123] 

H3K27 
Ezh2/ 

Kmt6a 

Yes 

(E6.5) 

Yes 

(neuron) 
Enhance 

Activating 

(prostate cancer) 

[126, 139-141] 

 
Ezh1/ 

Kmt6b 
No 

Yes 

(skin) 
- - [142, 143] 

H4K20 
Suv420h1,2/ 
/Kmt5b,5c 

Yes 
(E18) 

Yes 
(neuron) 

Inhibit 
Repressive 

(skin cancer)  
[144-147] 

 
Setd8/ 

Kmt5a 

Yes 

(E2) 

Yes 

(skin) 
- 

Activating 

(bladder cancer) 

[148-150] 

H3K36 
Nsd1/ 
Kmt3b 

Yes 
(E10.5) 

Yes 
(blood) 

Enhance 
Activating 

(leukaemia) 
[151-154] 

 
Setd2/ 

Kmt3a 

Yes 

(E11.5) 

Yes 

(endoderm) 
- 

Activating 

(breast cancer) 

[155-157] 

 
Whsc1/ 
Nsd2 

No 
Yes 

(bone) 
Enhance 

Activating 
(prostate cancer) 

[123, 158-160] 

 
Smyd2/ 

Kmt3c 
No 

Yes 

(endoderm) 
- 

Activating 

(squamous cell carcinoma) 

[161-163] 

 
Setmar/ 
Metnase 

No - - 
Activating 

(leukaemia) 
[164, 165] 

 
Ash1l/ 

Kmt2h 
No 

Yes 

(endoderm) 
- - 

[166] 

H3K79 
Dot1L/ 
Kmt4 

Yes 
(E9.5) 

Yes 
(ectoderm) 

Inhibit 
Repressive 
(leukaemia) 

[126, 127, 167-
169] 

DNA Dnmt1 
Yes 

(E9.5) 

Yes 

(neuron) 
Inhibit 

Repressive 

(colorectal carcinoma) 

[126, 170-172] 

 Dnmt3L 
Yes 

(E15.5) 
Yes 

(germ cell) 
Enhance 

Activating 
(squamous cell carcinoma) 

[173-176] 

 Dnmt3a No 
Yes 

(blood) 
Inhibit 

Repressive 

(breast cancer) 

[126, 177-179] 

 Dnmt3b 
Yes 

(E15.5) 
Yes 

(neuron) 
- 

Repressive 
(colorectal carcinoma) 

[172, 177, 180] 
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Table 2. The importance of histone histone (lysine) demethylase and DNA demethylases for development, 945 
differentiation, cell reprogramming (SCNT and iPSC), and cancer. 946 

Site Enzyme 
Embryonic 

lethality 

Abnormal 

differentiation 

Cell 

reprogramming Cancer 
Reference 

DNA Tet1 No 
Yes 

(neuron) 
Enhance 

Repressive 

(prostate cancer) 
[181-184] 

 Tet2 No 
Yes 

(blood) 
Enhance Repressive (leukaemia) 

[185-189] 

 Tet3 No  
Yes 

(neuron) 
Enhance 

Repressive  

(breast cancer) 
[190-192] 

 Tet1-3 No  
Yes 

(three germ layers) 
- - [182, 183] 

H3K9 

H3K4 

H4K20

H3K27 

Phf8/ 

Jhdm1f 
- 

Yes 

(neuron) 
- 

Activating 

(prostate cancer) 
[193, 194] 

H3K4 

H3K27 

Nsd3/ 

Whsc1l1 
- - - 

Repressive 

(breast cancer) 
[195] 

H3K36 
Kdm2a/ 

Jhdm1a 
- 

Yes 

(fat) 
Enhance 

Activating 

(lung tumour) 
[196-198] 

 
Jmjd5/ 

Kdm8 

Yes 

(E11) 

Yes 

(bone) 
- 

Activating 

(breast cancer) 
[199-201] 

H3K4 

H3K36 

C14orf169/

No66 
- 

Yes 

(three germ layers) 
- 

Activating 

(lung cancer) 
[202, 203] 

 
Kdm2b/ 

Jhdm1b 

Yes 

(E19) 

Yes 

(neuron) 
Enhance 

Activating 

(pancreatic cancer) 
[204-206] 

 
Kdm1a/ 

Lsd1 

Yes 

(E10.5) 
Yes 

(three germ layers) 
Inhibit 

Activating 

(breast cancer) 
[207-210] 

H3K4 Prdm9 No No - 
Activating 

(ovarian cancer) 
[211-213] 

 
Kdm5a/ 

Jarid1a 
No 

Yes 

(pancreas) 
Enhance 

Activating 

(leukaemia) 
[214-217] 

 
Kdm5b/ 

Jarid1b 
No 

Yes 

(blood) 
Inhibit 

Activating 

(prostate cancer) 
[194, 218-221] 

 
Kdm5c/ 

Jarid1c 

Yes 

(E15.5) 

Yes 

(neuron) 
- 

Activating 

(prostate cancer) 
[222-224] 

 
Kdm5d/ 

Jarid1d 
- No - 

Repressive 

(prostate cancer) 
[223, 225] 

H3K9 
Kdm3a/ 

Jmjd1a 
Yes 

Yes 

(endoderm) 
Enhance 

Activating 

(prostate cancer) 
[136, 194, 226-230] 

 
Kdm3b/ 

Jmjd1b 
- - Enhance 

Activating 

(prostate cancer) 
[136, 194] 

 
Kdm4a/ 

Jmjd2a 
Yes 

Yes 

(heart) 
No effect 

Activating 

(prostate cancer) 
[136, 194, 230, 231] 

 
Kdm4b/ 

Jmjd2b 
- 

Yes 

(bone) 
Enhance 

Activating 

(colorectal cancer) 
[136, 232, 233] 

 
Kdm4c/ 

Jmjd2c 

Yes 

(E2) 
No Enhance 

Activating 

(breast cancer) 
[136, 230, 234-236] 

 
Kdm4d/ 

Jmjd2d 
No No No effect 

Activating 

(colorectal cancer) 
[136, 237, 238] 

 
Kdm1b/ 

Lsd2 
No No Inhibit 

Activating 

(prostate cancer) 
[239, 240] 

H3K9 

H3K27 

Kdm7a/ 

Jhdm1d 
- 

Yes 

(neuron) 
- 

Repressive 

(uterine cancer) 
[241, 242] 

H3K27 
Kdm6a/ 

Utx 

Yes 

(E12.5) 

Yes 

(mesoderm) 
Enhance 

Repressive 

(myeloma) 
[217, 243-245] 

 
Kdm6b/ 

Jmjd3 
No 

Yes 

(bone) 
Enhance 

Repressive 

(Glioblastoma) 
[217, 232, 246-248] 
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