1,951 research outputs found
Cascaded Nondegenerate Four-Wave Mixing Technique for High-Power Single-Cycle Pulse Synthesis in the Visible and Ultraviolet Ranges
We present a new technique to synthesize high-power single-cycle pulses in
the visible and ultraviolet ranges by coherent superposition of a multiband
octave-spanning spectrum obtained by highly-nondegenerate cascaded four-wave
mixing of femtosecond pulses in bulk isotropic nonresonant media. The
generation of coherent spectra spanning over two octaves in bandwidth is
experimentally demonstrated using a thin fused silica slide. Full
characterization of the intervening multicolored fields using
frequency-resolved optical gating, where multiple cascaded orders have been
measured simultaneously for the first time, supports the possibility of direct
synthesis of near-single-cycle 2.2 fs visible-UV pulses without recurring to
complex amplitude or phase control, which should enable many applications in
science and technology.Comment: 13 pages, 4 figures. Submitted to Physical Review
The Ni(n,) cross section measured with DANCE
The neutron capture cross section of the s-process branch nucleus Ni
affects the abundances of other nuclei in its region, especially Cu and
Zn. In order to determine the energy dependent neutron capture cross
section in the astrophysical energy region, an experiment at the Los Alamos
National Laboratory has been performed using the calorimetric 4 BaF
array DANCE. The (n,) cross section of Ni has been determined
relative to the well known Au standard with uncertainties below 15%.
Various Ni resonances have been identified based on the Q-value.
Furthermore, the s-process sensitivity of the new values was analyzed with the
new network calculation tool NETZ.Comment: 11 pages, 13 page
Safety, tolerability, and impact on allergic inflammation of autologous E.coli autovaccine in the treatment of house dust mite asthma - a prospective open clinical trial
Background: Asthma is increasing worldwide and results from a complex immunological interaction between genetic susceptibility and environmental factors. Autovaccination with E. coli induces a strong TH-1 immune response, thus offering an option for the treatment of allergic diseases. Methods: Prospective open trial on safety, tolerability, and impact on allergic inflammation of an autologous E.coli autovaccine in intermittent or mild persistent house dust mite asthma. Determination of exhaled nitric monoxide (eNO) before and after bronchial mite challenge initially and after nine months of autovaccination. Results: Median eNO increase after autovaccination was significantly smaller (from 27.3 to 33.8 ppb; p=0.334) compared to initial values (from 32.6 to 42.2 ppb; p=0.046) (p=0.034). In nine subjects and a total of 306 injections, we observed 101 episodes of local erythema (33.3%; median of maximal diameter 2.5 cm), 95 episodes of local swelling (31.1%; median of maximal diameter 3 cm), and 27 episodes of local pain (8.8%). Four subjects reported itching at the injection site with a total of 30 episodes (9.8%). We observed no serious adverse events. All organ functions (inclusive electrocardiogramm) and laboratory testing of the blood (clinical chemistry, hematology) and the urine (screening test, B-microglobuline) were within normal limits. Vital signs undulated within the physiological variability. Conclusion: The administration of autologous autovacine for the treatment of house dust mite asthma resulted in a reduction of the eNO increase upon bronchial mite challenge. In nine subjects and 306 injections, only a few mild local reactions and no systemic severe adverse events were observed. EudraCT Nr. 2005-005534-12 ClinicalTrials.gov ID NCT0067720
Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,γ) in the ESR Storage Ring
© 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio
Unification, KK-thresholds and the top Yukawa coupling in F-theory GUTs
In a class of F-theory SU(5) GUTs the low energy chiral mass spectrum is
obtained from rank one fermion mass textures with a hierarchical structure
organised by U(1) symmetries embedded in the exceptional E_8 group. In these
theories chiral fields reside on matter `curves' and the tree level masses are
computed from integrals of overlapping wavefuctions of the particles at the
triple intersection points. This calculation requires knowledge of the exact
form of the wavefuctions. In this work we propose a way to obtain a reliable
estimate of the various quantities which determine the strength of the Yukawa
couplings. We use previous analysis of KK threshold effects to determine the
(ratios of) heavy mass scales of the theory which are involved in the
normalization of the wave functions. We consider similar effects from the
chiral spectrum of these models and discuss possible constraints on the
emerging matter content. In this approach, we find that the Yukawa couplings
can be determined solely from the U(1) charges of the states in the
`intersection' and the torsion which is a topological invariant quantity. We
apply the results to a viable SU(5) model with minimal spectrum which satisfies
all the constraints imposed by our analysis. We use renormalization group
analysis to estimate the top and bottom masses and find that they are in
agreement with the experimental values.Comment: 28 pages, 2 figure
Gauge Fluxes in F-theory and Type IIB Orientifolds
We provide a detailed correspondence between G_4 gauge fluxes in F-theory
compactifications with SU(n) and SU(n)x(1) gauge symmetry and their Type IIB
orientifold limit. Based on the resolution of the relevant F-theory Tate models
we classify the factorisable G_4-fluxes and match them with the set of
universal D5-tadpole free U(1)-fluxes in Type IIB. Where available, the global
version of the universal spectral cover flux corresponds to Type IIB gauge flux
associated with a massive diagonal U(1). In U(1)-restricted Tate models extra
massless abelian fluxes exist which are associated with specific linear
combinations of Type IIB fluxes. Key to a quantitative match between F-theory
and Type IIB is a proper treatment of the conifold singularity encountered in
the Sen limit of generic F-theory models. We also shed further light on the
brane recombination process relating generic and U(1)-restricted Tate models.Comment: 53 pages, 3 figures; v2: Refs added; v3: minor corrections to match
version published in JHE
Coulomb breakup of neutron-rich Na isotopes near the island of inversion
First results are reported on the ground state configurations of the
neutron-rich Na isotopes, obtained via Coulomb dissociation (CD)
measurements as a method of the direct probe. The invariant mass spectra of
those nuclei have been obtained through measurement of the four-momentum of all
decay products after Coulomb excitation on a target at energies of
400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated
Coulomb-dissociation cross-sections (CD) of 89 mb and 167 mb up to
excitation energy of 10 MeV for one neutron removal from Na and
Na respectively, have been extracted. The major part of one neutron
removal, CD cross-sections of those nuclei populate core, in its' ground state.
A comparison with the direct breakup model, suggests the predominant occupation
of the valence neutron in the ground state of Na and
Na is the orbital with small contribution in the
-orbital which are coupled with ground state of the core. The ground state
configurations of these nuclei are as Na_{gs (1^+)\otimes\nu_{s,d} and
Na, respectively. The ground state spin
and parity of these nuclei, obtained from this experiment are in agreement with
earlier reported values. The spectroscopic factors for the valence neutron
occupying the and orbitals for these nuclei in the ground state have
been extracted and reported for the first time. A comparison of the
experimental findings with the shell model calculation using MCSM suggests a
lower limit of around 4.3 MeV of the sd-pf shell gap in Na.Comment: Modified version of the manuscript is accepted for publication in
Journal of Physics G, Jan., 201
Massive Abelian Gauge Symmetries and Fluxes in F-theory
F-theory compactified on a Calabi-Yau fourfold naturally describes
non-Abelian gauge symmetries through the singularity structure of the elliptic
fibration. In contrast Abelian symmetries are more difficult to study because
of their inherently global nature. We argue that in general F-theory
compactifications there are massive Abelian symmetries, such as the uplift of
the Abelian part of the U(N) gauge group on D7-branes, that arise from
non-Kahler resolutions of the dual M-theory setup. The four-dimensional
F-theory vacuum with vanishing expectation values for the gauge fields
corresponds to the Calabi-Yau limit. We propose that fluxes that are turned on
along these U(1)s are uplifted to non-harmonic four-form fluxes. We derive the
effective four-dimensional gauged supergravity resulting from F-theory
compactifications in the presence of the Abelian gauge factors including the
effects of possible fluxes on the gauging, tadpoles and matter spectrum.Comment: 49 page
- …
