826 research outputs found

    Quantum Computation with Coherent States, Linear Interactions and Superposed Resources

    Get PDF
    We show that quantum computation circuits with coherent states as the logical qubits can be constructed using very simple linear networks, conditional measurements and coherent superposition resource states

    Teleportation using coupled oscillator states

    Get PDF
    We analyse the fidelity of teleportation protocols, as a function of resource entanglement, for three kinds of two mode oscillator states: states with fixed total photon number, number states entangled at a beam splitter, and the two-mode squeezed vacuum state. We define corresponding teleportation protocols for each case including phase noise to model degraded entanglement of each resource.Comment: 21 pages REVTeX, manuscript format, 7 figures postscript, many changes to pape

    Mesoscopic one-way channels for quantum state transfer via the Quantum Hall Effect

    Get PDF
    We show that the one-way channel formalism of quantum optics has a physical realisation in electronic systems. In particular, we show that magnetic edge states form unidirectional quantum channels capable of coherently transporting electronic quantum information. Using the equivalence between one-way photonic channels and magnetic edge states, we adapt a proposal for quantum state transfer to mesoscopic systems using edge states as a quantum channel, and show that it is feasible with reasonable experimental parameters. We discuss how this protocol may be used to transfer information encoded in number, charge or spin states of quantum dots, so it may prove useful for transferring quantum information between parts of a solid-state quantum computer.Comment: 4 pages, 3 figure

    Quantum computation with optical coherent states

    Get PDF
    We show that quantum computation circuits using coherent states as the logical qubits can be constructed from simple linear networks, conditional photon measurements and "small" coherent superposition resource states

    Quantum computation based on linear optics

    Get PDF
    We review recent theoretical progress in finding ways to do quantum processing with linear optics, non-classical input states and conditional measurements. We focus on a dual rail photonic scheme and a single rail coherent state scheme

    Simple Scheme for Efficient Linear Optics Quantum Gates

    Get PDF
    We describe the construction of a conditional quantum control-not (CNOT) gate from linear optical elements following the program of Knill, Laflamme and Milburn [Nature {\bf 409}, 46 (2001)]. We show that the basic operation of this gate can be tested using current technology. We then simplify the scheme significantly.Comment: Problems with PDF figures correcte

    Superabsorption of light via quantum engineering

    Get PDF
    Almost 60 years ago Dicke introduced the term superradiance to describe a signature quantum effect: N atoms can collectively emit light at a rate proportional to N^2. Even for moderate N this represents a significant increase over the prediction of classical physics, and the effect has found applications ranging from probing exciton delocalisation in biological systems, to developing a new class of laser, and even in astrophysics. Structures that super-radiate must also have enhanced absorption, but the former always dominates in natural systems. Here we show that modern quantum control techniques can overcome this restriction. Our theory establishes that superabsorption can be achieved and sustained in certain simple nanostructures, by trapping the system in a highly excited state while extracting energy into a non-radiative channel. The effect offers the prospect of a new class of quantum nanotechnology, capable of absorbing light many times faster than is currently possible; potential applications of this effect include light harvesting and photon detection. An array of quantum dots or a porphyrin ring could provide an implementation to demonstrate this effect

    Parity measurement of one- and two-electron double well systems

    Get PDF
    We outline a scheme to accomplish measurements of a solid state double well system (DWS) with both one and two electrons in non-localised bases. We show that, for a single particle, measuring the local charge distribution at the midpoint of a DWS using an SET as a sensitive electrometer amounts to performing a projective measurement in the parity (symmetric/antisymmetric) eigenbasis. For two-electrons in a DWS, a similar configuration of SET results in close-to-projective measurement in the singlet/triplet basis. We analyse the sensitivity of the scheme to asymmetry in the SET position for some experimentally relevant parameter, and show that it is realisable in experiment.Comment: 18 Pages, to appear in PR

    Schrodinger cats and their power for quantum information processing

    Get PDF
    We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.Comment: 10 pages, 5 figures; Submitted to a Special Issue of J. Opt. B on "Fluctuations and Noise in Photonics and Quantum Optics" (Herman Haus Memorial Issue
    • …
    corecore