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Mesoscopic one-way channels for quantum state transfer via the Quantum Hall Effect
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We show that the one-way channel formalism of quantum optics has a physical realisation in
electronic systems. In particular, we show that magnetic edge states form unidirectional quantum
channels capable of coherently transporting electronic quantum information. Using the equivalence
between one-way photonic channels and magnetic edge states, we adapt a proposal for quantum
state transfer to mesoscopic systems using edge states as a quantum channel, and show that it is
feasible with reasonable experimental parameters. We discuss how this protocol may be used to
transfer information encoded in number, charge or spin states of quantum dots, so it may prove
useful for transferring quantum information between parts of a solid-state quantum computer.

PACS numbers: 03.67.Hk, 73.43.Jn, 73.23.-b

There is growing interest in using mesoscopic chan-
nels for quantum information processing tasks [1, 2], and
mesoscopic analogues of one-way channels have been con-
sidered abstractly [3, 4]. One-way quantum channels pre-
serve quantum coherence, and have the additional prop-
erty that forward and reverse propagating modes are dis-
tinguishable. These channels are useful for describing the
dynamics of a system coupled to a non-classical source
[5] and have been proposed for use in a quantum state
transfer (QST) protocol [6]. The prototypical example of
a one-way channel comes from quantum optics: an op-
tical fibre with a Faraday isolator. A magnetic field in
the Faraday isolator, which breaks time-reversal symme-
try in the channel, correlates propagation direction with
polarisation, making counter-propagating modes distin-
guishable [5]. To date, mesoscopic realisations of this
kind of channel have not been discussed.

Here we propose magnetic edge states [7] of a 1D wire
as a physical realisation of one-way quantum channels,
and discuss their application for QST in a mesoscopic
system. In the quantum Hall effect (QHE) a magnetic
field applied normal to the wire induces the formation of
edge states along each edge of the wire, quantised in units
of the cyclotron energy [8, 9]. States on each edge prop-
agate in a definite direction, so backscattering between
counter-propagating modes is suppressed. This accounts
for the conductance plateaus observed in the QHE [8].

Bound edge states are formed by creating a local poten-
tial minimum (maximum) using surface gates to define
a quantum (anti)dot. Resonant tunnelling via (anti)dots
coupled to extended edge states has been experimentally
observed [10, 11, 12]. The tunnelling rates are tuneable
using external magnetic and electric fields.

Coherent superpositions of single electrons in different
edge states have been observed experimentally [13]. High
visibility fringes (∼ 0.6 at 20 mK) were seen in a Mach-
Zender interferometer [14] consisting of edge states con-
nected by tunnel barriers. This experiment demonstrates

FIG. 1: Quantum dots coupled to one another and to nearby
edge states. Dotted lines indicate tunnel contact. The grey
rectangles indicate Ohmic contacts. Dots are labelled as
“atom” or “cavity” to make clear the analogy with the atom-
optical scheme [6].

the possibility of transferring quantum information via
edge states over distances of 10 µm or more.

Using edge states as one-way quantum channels, we
show how to implement a proposal for QST in a meso-
scopic system. Cirac et al. [6] describe a protocol for
transferring the quantum state of one two-level atom in
a cavity, connected by optical fibre, to another identi-
cal system using shaped control pulses applied to each
atom. Here, we map this protocol to a system consist-
ing of quantum dots connected by magnetic edge states.
This may prove useful for transferring quantum informa-
tion between parts of a solid-state quantum computer.
We also consider sources of error in the protocol and con-
clude that these are not debilitating.

The QHE is understood by solving the Schrödinger
equation for an electron in a lateral potential, U(y), and
a magnetic field, B [7]. The eigenmodes are of the form
ψn,k(x, y) = eikxχn(y). For a linear lateral potential,
U(y) = eEy, the eigenenergies are εn,k = ~ v0k + (n +
1
2 )~ωB where v0 = −E/B > 0, ωB = eB/meff is the
cyclotron frequency and n ∈ Z

+, producing subbands of
edge states. Thus, ideally, edge states are dispersionless,
ω = v0k, with group velocity v0.

The system of dots in tunnel contact with magnetic
edge states is shown schematically in Fig. 1. The system
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Hamiltonian is Htot = Hdots +HMES +Hint [15],

Hdots

~
=

4
∑

i=1

ωic
†
i ci + Ω1(c

†
1c2 + c†2c1) + Ω2(c

†
4c3 + c†3c4),

HMES

~
=

∫

dωg(ω)ω b†(ω)b(ω),

Hint

~
=

∫

dω(κ1(ω)(b†(x0, ω)c2 + c†2b(x0, ω))

+ κ2(ω)(b†(x1, ω)c4 + c†4b(x1, ω))).

Here c†i creates a dot i electron, b†(ω) creates an edge
state electron with energy ~ω, b†(x, ω) = b†(ω)eiωx/v0 ,
g(ω) is the density of states, κ(ω) is the tunnelling rate
between dots and an edge states, x0,1 are locations of
the dots and Ωi(t) are tuneable tunnelling rates between
the dots. Tunnelling rates decrease exponentially with
distance from the dot, so we only consider the nearest,
resonant subband.

Non-linearities in U(y) introduce dispersion. A small
quadratic term in the lateral potential, U(y) = eEy +
1
2meffω

2
0y

2, results in the dispersion relation ω = v0k +
αk2, where α = ω2

0~/(2ω2
Bmeff). As discussed later, for

typical experimentally relevant parameters, α is small,
and we treat this as a source of error in the protocol.

Input-output relations. The input-output formalism
relates the output channel of a quantum system to its
input. Formally, if g(ω)ω and κi(ω) ≡

√

γi/2π were con-
stant over relevant frequencies around the dot energies,
ωi, then the Markov approximation applies [5], and the
input-output relation for the first system of dots is

bout(x0, t) = bin(x0, t) + i
√
γ1c2(t), (1)

where x0 is the location of the first pair of dots and
b(x, t) =

∫ ∞

−∞
dω b(ω)eiω(t−x/v0). A similar relation holds

for the second pair. For a dispersionless channel, the in-
put to the second system is given by

bin(x1, t) = bout(x0, t− L/v0). (2)

where L = x1 − x0. By virtue of the fact that back-
scattering is strongly suppressed in edge states, we can
neglect the effect of the second system on the first.

For a dispersing channel, the input to the second sys-
tem is related to the output of the first by [16]

bin(x1, t) = δν(t) ∗ bout(x0, t− τ) (3)

where τ = L/v0, δν(t) = (iπν)−1/2e−t2/iν , ν = 4ατ/v2
0

and the convolution f(t) ∗ g(t) =
∫

dt′f(t)g(t− t′).

Number eigenstate QST. Witihin the Markov ap-
proximation, this model for quantum dots in tunnel con-
tact with edge states parallels the atom-optical system
presented in [6]. In particular, in the ideal case where
the dot energies are equal (ωi = ω̄), the channel-dot

(a) (b)

FIG. 2: (a) QST for charge qubits. (b) QST for spin qubits.

coupling gates are equal, γ1,2 = γ, the channel is dis-
persionless and does not scatter, then the Hamiltonian is
formally identical to that of [6].

The physical correspondence to [6] is shown in Fig. 1.
We identify an electron on dot 1 (or 3) with an atomic
excitation and an electron on dot 2 (or 4) with a cav-
ity photon. The computational basis for each dot is the
absence, |0〉i, or presence, |1〉i = c†i |0〉i of an electron.
Tunnelling rates, Ωi(t), between dots may be controlled
via external gates. Gate pulses that implement QST have
been derived previously [6, 17].

Finally, we identify optical fibre modes in [6] with edge
states. In both mesoscopic and optical systems, the pres-
ence of a magnetic field breaks time-reversal symmetry
of the system so that counter-propagating modes are in
principle distinguishable. In this way, edge states are the
electronic analogues of optical one-way channels, and the
theory for one-way quantum channels [5] may be applied.

Thus the QST protocol described in [6] can be used to
transfer the electronic state of dot 1 to dot 3 using edge
states as a one-way quantum channel. In this scheme
the computational basis states are the eigenstates of the
dot number operator, {|0〉i, |1〉i}. Therefore a superpo-
sition such as |ψ〉 = c0|0〉 + c1|1〉 can be transferred
coherently from dot 1 to dot 3 using this protocol, i.e.
|Ψi〉 = |ψ〉1|0〉2|0〉3|0〉4 → |Ψf 〉 = |0〉1|0〉2|ψ〉3|0〉4.

The dynamics of the density matrix for the system of
dots is given by the master equation [17],

ρ̇ = −i[Hsys, ρ]/~ + γ1D[c2]ρ+ γ2D[c4]ρ

− γ{[c†4, c2ρ] + [ρc†2, c4]} ≡ L[ρ], (4)

where γ =
√
γ1γ2 and D[c]ρ ≡ cρc† − (c†cρ + ρc†c)/2.

A simple pulse shape that effects ideal quantum state
transfer is Ωi(t) = γi sech(γit/2)/2 [17], which we will
use for evaluating various sources of error in the protocol.
For this pulse shape, the system of quantum dots remains
in a pure state, given by

|ψ(t)〉 = c0|0000〉+ c1{α(t)|1000〉 + α(−t)|0010〉
+ β(t)(|0100〉 − |0001〉)/

√
2}, (5)

α(t) = (1 − tanh(γt/2))/2 and β(t) = i sech(γt/2)/
√

2.
Charge QST. Encoding a qubit in the number state

of electrons is impractical due to the conservation of elec-
tron number. However, the scheme outlined above serves
as a primitive to implement QST for a charge qubit en-
coded in the position of an electron in a double-well. The
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charge qubit QST protocol simply repeats the primitive
protocol twice, as illustrated in Fig. 2(a). Qubit A is en-
coded in the position of an electron distributed between
dots 1a and 1b. To transfer the state of qubit A to qubit
B, the protocol first transfers the state of dot 1a to dot
3a, then the state of dot 1b to dot 3b. The ideal protocol
is unitary [6], so it may be concatenated as described.

Spin QST. The primitive transfer protocol described
above may also be used to transfer a spin qubit from
one dot to another, achieved using a similar two step
process as described above. This relies on the spin de-
pendence of the tunnelling rates [12], due to the different
spatial configuration of spin-polarised edge states. Sup-
pose the spin-up states, | ↑〉, occupy the outer edges,
as shown in Fig. 2(b). Since | ↑〉 states are in closer
proximity to one another than | ↓〉 states, the tunnelling
rate, γ↑, between | ↑〉 states may be much larger than
γ↓. Therefore, the gate pulses to transfer a | ↑〉 electron
from dot 1 to dot 3 are much faster than those required
to transfer a | ↓〉 electron. If an electron were in a state
|ψ〉1 = c↓| ↓〉1 + c↑| ↑〉1, then applying fast gate pulses,
determined by γ↑, would have a small effect on the | ↓〉
component of |ψ〉 for which tunnelling rates are propor-
tional to γ↓. After this, the | ↓〉 component is transferred
from dot 1 to dot 3 using pulse rates determined by γ↓.
However, turning on the coupling between dots 3 and 4
leads to a leakage error in the | ↑〉 component which was
previously transferred. To circumvent this, the | ↑〉 com-
ponent is swapped from dot 3 to an ancilla, dot 3a during
the transfer of the | ↓〉 component. Once this process is
completed the | ↑〉 component is swapped back to dot 3.

Error sources. Away from the ideal case, the transfer
fidelity is reduced, so we analyse the sensitivity of the
protocol to small perturbations from the ideal. For each
parameter in the system, labelled generically as p, the
transmission fidelity due to variations in p is given by
Fp = 1 − Fp, where Fp ≡ 〈Ψf |∆ρp|Ψf〉 and ∆ρp ≡
|Ψf 〉〈Ψf | − ρp(∞) is the error in the final state, ρp(∞),
of the system due to errors in p. Fp will be largest when
the initial state of dot 1 is |1〉1, so we use the initial state
|Ψi〉 = |1〉1|0〉2|0〉3|0〉4. The desired final state is then
|Ψf 〉 = |0〉1|0〉2|1〉3|0〉4. Since the errors are presumed
small, they can be analysed independently, by solving
Eq. (4) for small perturbations of each parameter.

There is an amplitude for an electron in an edge state
to be scattered into nearby states. This is analogous to
photon scattering, so we model it in the same way [5].
Eq. (4) is modified by the replacement γ → γ

√
1 − ǫs,

where ǫs is the scattering probability for the channel.
The scattering probability depends on the transmission
length, L, according to ǫs = 1 − e−L/Ls , where Ls is
the scattering length [18]. Ls depends strongly on the
temperature and purity of the sample, but for T < 5 K,
Ls & 100 µm has been reported [13, 18].

Accounting for channel dispersion is more complicated,
since the original formulation of one-way quantum chan-

p δω1 δω2 δγ ǫs ǫD

Fp 4.29 δω2

1 1.00 δω2

2 0.25 δγ2 1.00 ǫs 0.02ǫ2D

TABLE I: Lowest order terms in infidelity due to systematic
errors. Dimensionless parameters: δωi = (ωi − ω̄)/γ1, δγ =

1 − γ2/γ1, ǫs = 1 − e−L/LS and ǫD = ατγ2/v2

0 .

nels implicitly assumes a dispersionless channel. There
are difficulties in generalising the input-output formalism
to include dispersion, so we employ a different approach
to estimate these errors. After the electron has tunnelled
into the channel, the channel is in a superposition of zero
and one electrons. The amplitude for an electron to be
at position x at time t is found from Eqs. (1) and (2) to
be 〈0|b(x, t)|φ〉 =

√

γ/2β(t− τx), where |φ〉 is the chan-
nel state and τx = (x − x0)/v0 is the propagation time
to position x. Dispersion convolves this amplitude with
the channel transfer function according to Eq. (3), so the
transmission fidelity is then

F = |〈φ̃|φ〉|2 = |
∫ ∞

−∞

dt β̃∗(t)β(t)|2, (6)

where β̃ = δν ∗ β. We expand β̃(t) in powers of ν then
evaluate Eq. (6) yielding F = 1 − ǫ2D/45 + ..., where
ǫD = νγ2/4 is the dimensionless dispersion strength.

Table I lists the various dimensionless parameters in
which errors may occur, along with the associated infi-
delities, which are computed as described earlier. The
protocol is quadratically sensitive to all parameter vari-
ations except for scattering. Clearly, when the dots are
slightly out of resonance with one another (δωi 6= 0) or
if γ1 6= γ2, there is a corresponding error in the protocol.

For a given error rate, we may use the tabulated results
to estimate the tolerable deviations of the parameters
from ideal. Time and energy scales for the protocol are
determined by γ, so we estimate this quantity for a typ-
ical experimental system. Suppose the coupling between
dot 3 and the edge state channel is operated with a tun-
nelling probability of T 2. This is given by T 2 = (hgγ)2

[19], where g is the density of edge states in energy space.
Roughly, g ≈ 1/∆E, where ∆E is the bandwidth of the
tunnelling interaction given by

∆E = ∆k dE/dk = (2π/lc)~v0 = hv0/lc, (7)

where lc is the length over which the bound and extended
states are in contact, shown in Fig. 1. Therefore, T 2 =
(lcγ/v0)

2 ≤ 1, so γ ≤ v0/lc. Thus, the inverse of the time
it takes an electron to pass the dot gives a bound on γ.

To estimate v0 = −E/B, we take B ∼ 1 T (set by
an external source), and E which we estimate from the
potential profile at the edge of the wire due to exter-
nal gate voltages and screening effects [20]. An upper
estimate for E is given by the slope of the lateral poten-
tial in the incompressible region [20]. The voltage across
the incompressible region is of order Vi = ~ωB/e and
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ωB = 176 GHz for bulk GaAs in a 1 T field [21]. The
width of the incompressible region is about the magnetic
length, lB =

√

~/eB = 25.6 nm in a 1 T field. Then
Emax ≈ Vi/lB and we find that v0 ≤ 67 km s−1. Thus
we estimate v0 = 104 m s−1 for the group velocity, con-
sistent with previous results [10].

The contact length is of order the dot size, so for lc . 1
µm and v0 = 104 ms−1 we have γ ≤ 100 µeV. This
corresponds to an edge perfectly transmitted into the dot
region, so the dot is ill defined. In order that the dot be
well defined, the actual tunnelling rate should be some
fraction of this value, so we take γ ∼ 10 µeV [10].

From this, bounds for the precision with which the
dot energies need to be controlled can be established.
If δωi < 0.1, then errors arising from non-resonant dot
energies will be < 1%. This requires that the dot energies
be controlled to around 1 µeV. From Table I this is also
the precision with which γi needs to be controlled.

We take ω0 ≈ 1011 Hz [18] and meff = 0.067mel for
GaAs, so transmission over L = 100 µm gives ǫD = 0.057.
Using surface gates to shape the lateral potential [22], ω0

could be reduced: ω0 = 1010 Hz would give ǫD < 10−3.
In any case, dispersive effects are negligible.

For temperatures below 1 K, Ls ∼ 1 mm [18], which
is much longer than the dephasing length of Ld ∼ 10
µm at T ∼ 20 mK [13]. The dephasing time scale is
τd = Ld/v0 ∼ 1 ns, comparable with recently measured
decoherence rates of charge qubits [23]. These results
suggest that dephasing will be a significant issue for im-
plementing QST over distance much greater than 10 µm.

To test our conclusions, we propose measuring currents
between the Ohmic contacts shown in Fig. 1. Ideally, cy-
cling the protocol at a frequency f will result in a current
between contacts A and B, IAB = ef . Errors at a rate
p produce currents IAB = (1 − p)ef , and IAC = pef .
Optimising IAB also provides a method for tuning dot
energies and tunnelling rates.

In conclusion, we have proposed magnetic edge states
as physical realisations of one-way channels in mesoscopic
systems. Using edge states as quantum channels linking
systems of quantum dots, we have described a mesoscopic
analogue of an atom-optical system capable of imple-
menting quantum state transfer. This may prove useful
for transferring information between parts of a solid-state
quantum computer. Our proposal builds on recent ex-
perimental results demonstrating interference in an edge
state interferometer, and our error analysis indicates that
the protocol is experimentally feasible.
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