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Teleportation using coupled oscillator states
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We analyze the fidelity of teleportation protocols, as a function of resource entanglement, for three kinds of
two-mode oscillator states: states with fixed total photon number, number states entangled at a beam splitter,
and the two-mode squeezed vacuum state. We define corresponding teleportation protocols for each case
including phase noise to model degraded entanglement of each resource.

PACS numbds): 03.67—a

I. INTRODUCTION statistical model. Of course correlations can exist in classical
mechanics, but entanglement refers to a distinctly different
Quantum entanglement plays a central role in the emergkind of correlation at the level of quantum probability am-
ing fields of quantum computatidii—5], quantum cryptog- plitudes. The essential difference between quantum and clas-
raphy [6,7], quantum teleportatioi8—13], dense coding sical correlations can be described in terms of the separabil-
[14], and quantum communicatidi5-17. The character- ity of states[34—41. A density operator of two subsystems

ization of entanglement is a challenging probl¢i8—-23 s separable if it can be written as the convex J@9]
and considerable effort has been invested in characterizing

entanglement in a variety of conteX4-30. L,

One such context, quantum teleportation, has played a P:; WaAPA® P (1)
crucial role in understanding how entanglement can be used
as a resource for communication. Recent experimental demvherepA andpx are density matrices for the two Subsystems
0nstrati0n5[3l,32] SuggeSt that quantum teleportation could and theWA are positive Weights Satisfyin@AWAz 1. For

be viewed as an achievable experimental technique to quagxample, for two harmonic oscillatota and b) the density
titatively investigate quantum entanglement. Teleportation igperator which has correlated energy

a way of transmitting an unknown quantum state to a distant

receiver with far better reliability than can be achieved clas- -
sically. As the entanglement of the enabling resource is de- Pab™ Zo pn[n,n){n,n| 2
graded, the fidelity of the teleportation protocol is dimin- "=
ished. is separabléwhere we use the notatign,n)=|n),®|n);)

In this paper, we attempt to make this intuition more pre-yhije the pure state
cise using specific examples from quantum optics. Three en-
tangled resources are considered: states with fixed total pho- *
ton number, number states entangled at a beam splitter, and |V ap= 2 \/E|n,n> (©)]
the two-mode squeezed vacuum s{@@]. The examples we n=0
discuss exhibit quantum correlations between the photo

) . Has the same classical correlation but is not separable. In this
number in each mode and, simultaneously, between th

ﬁ)rm, we see that is possible for a separable and an entangled

phase of _each mode. . state to share similar classical correlations for some vari-
In reality, the entanglement will not be perfect, but de'ables

graded to some extent by uncontrolled interactions with an Consider a communication protocol in which the results

eﬂwroriinetnt ?iuiing I\ormaitiomn. ;—OirrHdeelntglsrit|We|r??iTsuiiﬁi f measurements made on a physical system are transmitted
pf as?n ijct ula ro nsél Om e:;c f/)v N ; Iepf(tzjwiteh Brll.l h € | ‘to adistant receiver. The goal of the receiver is to reconstruct
of completely random phase, we are 1e only the clasy,q physical state of the source, using only local resources,

sical intensity(photon numbercorrelations. The state is no conditioned on the received information. The communication

longer entangled. and_ the f|deI|ty of t_he protoc_ol_ depend%at takes place is of course entirely classical. In a teleporta-
only on the classical intensity correlations remaining in thetion protocol there is one additional feature: quantum corre-

resource. lations (entanglementare first shared between the sending
and receiving station. The degree of entanglement shared by
sender and receiver is called the teleportatiesource If
Intuitively entanglement refers to correlations betweenthere is no shared quantum correlation between the sender
distinct subsystems that cannot be achieved in a classicahd receiver, the protocol is called classical.
The extent and nature of the quantum correlations in the
resource determine the fidelity of the protocol. Under ideal

IIl. ENTANGLEMENT AND TELEPORTATION

*Electronic address: cochrane@physics.ug.edu.au conditions, the unknown state of some physical system at the
"Electronic address: milburn@physics.ug.edu.au transmitting end can be perfectly recreated in another physi-
*Electronic address: bilm@physics.uq.edu.au cal system at the receiving end. There are many ways in
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which actual performance can differ from the ideal. In thisThe mean photon number in each mode is givenrby
paper, we analyze the change in the performance of telepor=\2?/(1—\?). If, however, we constrain the total photon
tation protocols as the degree of entanglement in the resouregimber,N, of each mode, we get a very different expression
is varied by decoherence. Our primary objective is to use théor a maximally entangled state,

fidelity of a teleportation protocol to compare and contrast

different kinds of entangled oscillator states. 1 N
A general teleportation protocol proceeds as follows. The [N)= E IN—n,n). 5)
sender, Alice, has target state,|#)+, that she wishes to V1+Nn=0

teleport to Bob, the receiver. Alice and Bob each have access _
to one part of an entangled bipartite physical system preln€ entropy of the reduced state of each mode is+#MN}L
pared in the stath)ag. In this paper, the bipartite physical While the mean photon number /2. While squeezed
system is a two-mode electromagnetic field. In order to seny@cuum states may be achieved in the laboratory, states with
the state of the target to Bob, Alice performs a joint mea-fixed total photon number have a not been produced, and will
surement on the target and her mode. She then sends tRgt be possible until we have a reliadie photon source.
information gained from these measurements to Bob via 4 Nere are now a couple of proposals for such soufé8s
classical channel. Bob performs local unitary transformation42] and it may not be too long before they are used in tele-
on the mode in his possession according to the informatioRortation schemes. o . _
Alice sends to him, thereby attempting to recreate the initial 1€leportation fidelity for infinite-dimensional Hilbert
target state. We quantify the quality of the protocol by theSPaces must necessa_\rlly vary from unity for an arbitrary tar-
probability that Bob's received state is the same as the targéiet state, as the notion of a maximally entangled resource
state. This quantity is known as tfidelity. differs from the finite-dimensional case. Thg teleportation
The fidelity of quantum teleportation protocol is deter- Protocol can also be degraded by unknown incoherent pro-
mined by the degree of shared entanglement, the quality gi€sses that corrupt the purity of the shared entanglement. Of
the measurements made by the sender, the quality of tHePUrse, in some cases these incoherent processes may de-
classical communication channels used, and how well Botroy the correlations entirely, for example by absorbing all
can implement the desired unitary transformations. In thighe photons in each mode before Alice and Bob get to use
paper, we will discuss only the first of these; the amount ofhem. In this paper, however, we will only consider those
shared entanglement. In the original teleportation protocof€coherence processes that change the purity of the states
[8], the bipartite system was made up of two systems eacfnd leave unchanged the classical intensity correlations.
described by a two-dimensional Hilbert space, that is to say,
two qubits, and the shared entangled state wasagimally Ill. IDEAL RESOURCE
entangled statgl9]. In the case of two correlated harmonic )
oscillators, or two field modes, we cannot define maximal N @ recent paper by Milburn and Braunst¢88], a tele-
entanglement in quite the same way, as the entropy of eadiPration protocol was presented using joint measurements
component system can be arbitrarily large. In this paper, waf the photon number difference and phase sum on two field

define extremal entangled pure states of two field modes if"°des: This protocol is possible because the number differ-

terms of the total mean photon number and the total maxi€"c€ @nd phase sum operators commute, thus allowing deter-

mum photon number. mination of these quantities simultaneously and to arbitrary
In the case of a system with a finite-dimensional Hilbert2¢CUracy. _

space, a state of maximufwon Neumanhentropy is simply Number sum and .phgsedlfferenceoperators also com-

the identity operator in that Hilbert space. A natural generMUte, implying that if eigenstates of these operators can be

alization of this idea to infinite Hilbert spaces would define afoUnd. then a teleportation protocol is possible. Such a pro-

maximum entropy state subject to some constraint, such gcol is discussed belo_w. Recently, teleportation using num-
mean energy or total energy. These of course define the cQEr SUM and phase difference measurements was described

nonical ensemble and microcanonical ensemble of statisticaft6)- That work did not address how the degree of entangle-
mechanics. In the case of entangled pure states, the Arakinent in the resource changes the teleportation fidelity as we

Lieb [42] inequality indicates that the entropy of each com-d0 here. ,
ponent system is equal. As the entropy of a harmonic oscil- B€cause the number sum and phase difference operators

lator scales with mean energy, this indicates that eacommute, we look for simultaneous eigenstates of these ob-

component subsystem has the same mean energy. If wirvables. Consider states of the form
maximize the entropy of each subsystem subject to a con-

straint on the mean energy, the state must be a thermal state. _ % dIN— 6
The entangled pure two-mode state, for which the reduced |¥)ae = aIN=maln)e ©)
density operator of each mode is thermal, is the squeezed
vacuum state, which are eigenstates of number sum with eigenvalLiEhe
labelsA andB refer to the sender’s and receiver’'s component
o of the entangled modes, respectively, and the satisfy
IN=(1=-A2)Y2S \"|n,n). 4) >.ldq|2. This state will be maximally entangled when tie
n=0 are all equal, giving the resource
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FIG. 1. Joint phase probability density. A¢$ increases, the
probability density becomes very narrowly peaked abgut=0.
The ¢_ axis is in units of.

. N
> IN=n)alnYs. (7)
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| D) =[P,(q)(N+1)]"¥2
X; quN+n|q_N+n>T|N_n>A|n>B: (12)

wheren runs from max(N—q) to N. The probability of
obtaining the resuly is

1
P(a)= 71 2 [Ca-nnl® (13

The subscript emphasizes that this probability refers to the
idealized resource. Alice now measures the phase difference
with result¢_ . The conditional state of Bob’s mode is then
the pure state

|99 Ne=[Pi(@)(N+1)] 2 €2 cqynln)a.
(14)

Using the resultsiand¢_ , and knowledge of the number of
Fock states in the resour¢hl), Bob has sufficient informa-

This state tends towards eigenstates of phase difference &isn to reproduce the target state. He does this by amplifying
N—. To see this, consider the joint phase probability den-his mode so thain)g—|q—N+n)g and phase shifting it by
sity of Eq.(7), which is determined by the ideal joint phase e~ '?"¢~. The unitary amplification operation is described in

operator projection operator| pa)(dal®|ds){Ps| as
P(pa,d8)=tr(pasl &) Pal®| ) Psl), Where[47-49

|4)=2, e"’In). ®

Substituting the state in E@6), we have

2

N
20 einq&, , (9)

1
P(¢A'¢B):m

where ¢_= ¢pp— ¢pg. The probability density as a function
of Nand¢ _ is shown in Fig. 1 and indicates that the density

becomes sharply peaked abatit =0 in the intervall —,
7] asN gets larger. Hence the states of [Ef).tend to eigen-
states of phase difference with increasMg

[50]. These operations complete the protocol, and the state
Bob finally has in his possession is

[P oua=[PIAN+ D] X Cqonrala=N+n)e.
(15

The fidelity of this protocol depends on the resyland is
Fi(@)=2 [Cq-nnl® (16)

=(N+1)Py(q). 17

As the fidelity depends on the result of the number sum

measurement, it varies from one run to the next. To obtain an
overall figure of merit for the protocol, we define the average

fidelity,

The state to be teleported, the target state, can be written

in the general form

©

1= E Crn M)

m=0

(10

The input state to the protocol is then

1 ] N
|¢>_ \/N-I—lmE:O n=

A C|M)r[N=M)aln)g.  (12)

If Alice measures the number sum of the target and her com-

so the only coefficient available is,, which is 1. We find
that the teleportation fidelity is unity, independent of the

ponent of the entangled resour@e., No+N;) with result
g, the conditional state of the total system is

F.=§ Fi(q)P(q). (18)

In this case, we find

]

E=(N+1>q§0 P(q)?. (19)

To see how well the teleportation protocol performs, we

shall consider some examples.
Let the target state be a number state,

[ r=[m)r, (20
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1 T T T T IV. BEAM-SPLITTER RESOURCE
The resource states discussed in Sec. Ill illustrate the pro-

0.8f tocol well, but are not produced by any known physical in-
teraction. However, the beam-splitter interaction can be
shown to give a resource with similar properties to Ef).

0.6 The beam-splitter interaction is described [By]

Fr : t +

0.4} |y ap=€'(P(@P+aPTIN) [N}, (21
where the operators, af, b, andb' are the usual boson

0.2 annihilation and creation operators for modeandB, andN

is the number of photons at each input port of the beam
splitter. Because the number sum of the two modes is a con-

00 20 20 60 30 100 stant (=2N), we can rewrite the resource in terms of eigen-
N states of the number sum. The resource is now written as
FIG. 2. Average fidelity as a function of the energy in the ideal 2N
resourceN, for a coherent state of amplitude= 3. | ) np= 20 dn—n|N)al2N—n)g. (22
0=

measurement of, because the only term appearing in theThe coefficientsd,,_, are derived by first using Schwinger’s
summations of both the fidelity and the probability is thatpsgon representation of angular momentum, with total angu-
corresponding te,,. Hence, this protocol works perfectly if |53 momentum quantum numbge N, and then identifying

the target is a number state. o , these coefficients as rotation matrix elemdsts. Thed,,_y
In Fig. 2, we show the average fidelity as a function of the,yefficients are defined by

total photon number in the resource for a coherent state tar-

get with amplitudex= 3. It is clear that increasing the num- dn,Nze*‘(”’ZN”*N)Dﬁ,N o(m2), (23
ber of photons in the entangled resource improves the tele- '
portation protocol. where

B 2j+m—-m’—2s B m’ —m+2s
L e

(— 1)m'm*3( cos— sin-

j —TI(i NI —m/ ) (i (i — 1711/2
Dty (B =L M)L G =m)H () (=) Y —— e e g (24)
|
The variables ranges over all integer values where the fac- min(g,2N) 2
torials are non-negativis2]. It is easy to verify that all co- Fes(q)= Pva) > |cq,n|2dn,,\, (27
efficients withn odd are zero. Bs(d) | n=0

This protocol proceeds identically to that discussed in

Sec. Ill. We illustrate this variation of the protocol with the  If we again consider a coherent state target of amplitude

pure state form of the resource as given in E2p). Aftera  «=3, we can compare the beam-splitter-generated resource

number sum and phase difference measurement on nfodeswith the ideal resource in Sec. lll. The average fidelity as a

and A, and then applying the amplificatio@N—n)g—|q function of energy in the resource is shown in Fig. 3 and is

—n)g and phase shife 2"~ the output state becomes  almost identical to Fig. 2 except that its maximum is ap-

proximately one-half as opposed to unity. This is due to the

fact that all terms in Eq.22) with n odd are zero. Effectively

|4 DY oue=[Pes(@] Y2 X cq-ndn-nla—n)s, only half of the perfect correlations in the ideal entangled
n=0 resource are available, hence the maximum fidelity we would

min(q,2N)

29 expect under such circumstances is 0.5. Even so, the state
where the probability for a number sum resglis becom_es a better teleportation resource with increabing
(see Fig. 3.
min(q,2N) It is, however, possible to teleport those states which have
Pes(q)= E |Cq7n|2|dan|2- (26) no odd photpn number components with near unit fidelity.
n=0 An example is the even “cat” state, formed from the super-
position of two coherent states of equal real amplitude but
The teleportation fidelity is found to be opposite sigri53],
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0.5 : : : : tuations to each mode independently with the unitary opera-
tor
U(f)=exd —i(0a'a+ 6,b'b)], (29
0.3f where the phase sum and differertce 6,+ 6y, is taken to be
F Gaussian randomly distributed with a zero mean and vari-
Bs anceao,
0.2
P(8)= ! - 30
0.1t ] (0)= \/ﬁex 25 (30
0 - 2 - : 1 Even though a Gaussian distribution is not periodic, it can be
0 20 0 N 60 80 00 taken to be an approximation of a true periodic distribution,

such as cd¥(6—6,), which for sufficiently largeN is ap-
FIG. 3. Average fidelity as a function of energy in the beam- proximately Gaussian nea#, with a variance of 1/R.
splitter resourceN, for a coherent state of amplitude=3.

A. Squeezed-state resource

_ la)yr+|—a)r Reference[33] describes a teleportation protocol using

)= \/W (28) two-mode squeezed vacuum states as an entanglement re-
2+2e source together with number difference and phase sum mea-

surements. The resource for this protocol is written in the

The average fidelity in this case is shown in Fig. 4. ThisFock basis as

result implies that it may be possible to tailor resources for .

given applications so that certain classes of states may be —

teleported well, without necessarily being able to teleport an |[#)ae=V1=\ n§=:0 N"[n)aln)e -

arbitrary state.

(31)

The entanglement between resource modes may be altered
V. DECOHERENCE by changing the squeezing parameterand by decohering
the resource using phase diffusion. Applying the phase shift

Teleportation requires quantum correlations, in the formy(g) and averaging over all realizations of the phase gives
of entanglement, to be shared by the sender and receiver. {fe resource as a density operator

this section we consider how teleportation fidelity changes if

decoherence diminishes the extent of the correlation. We use *

a decoherence mechanigphase diffusion which does not  pag=(1—12) > A"™"e Y™ 1"?|n)(n’|@|n)g(n’],
change the intensitgphoton numbercorrelations of the en- n,n’=0

tanglement resource but does destroy the coherence in the (32
number basis.

Phase diffusion is modeled by adding random phase flucvVhere y=o/2 describes the degree of decoherence.

The number difference measurement can give a positive

1 or negative result and we consider each case separately. If

the state to be teleported js= =, nCmCr, [MY(m’|, the
output state at the receiver, conditioned on the positive num-
0.8r ber differenceq, is
2 o0
0.6f 1-a D « :
=— CntqChr A"
F’cat Pout,B P.(q) i n+qbn’+q
04 xe Y12 n+q)e(n’ +4, (33
0.2¢ 1 with a corresponding fidelity given by
0 . . . L _)\2 . 2 2y Ny n’ o= y(n—n")2
0 20 40 60 80 100 Fr D=5 2 lcnigl?lCnraglPA™ e :
N +(q n,n'=0

(34)
FIG. 4. Average fidelity as a function of the energy in the beam-
splitter resourcelN, for a “cat” state of amplitudex= 3. where
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0.4r
0.2t 0.4f
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0 005 01 015 02 025 03
g Y

FIG. 5. Average fidelity as a function of degree of decoherence, - .
y, for a two-mode squeezed vacuum resource with a squeezing FIG. 6. Average fidelity as a function of degree of decoherence,

parameter value of =0.8. Target is a coherent state of amplitude * ith an ideal resource energy correspondindite100. Target is
=3 a coherent state of amplitude= 3.

. L= 1 B S, [Cannl o270
Po(a)=(1=2%) 2 [Cn gl A7 @5 VTN+LIP(g) S, el e !
B (39)

is the probability of obtaining a result for photon number , B .
difference measurements at the sender, which does not dg/__heren andn’ run from m§1>§(0,\l g) to N andPy(q) IS
pend on the decoherence. given by Eq.(13). It is not difficult to show that by setting

v=0 we reproduce the result without noise, ELj7).
The average fidelity as a function of the degree of deco-
herenceyy, is shown in Fig. 6 for the example of a coherent

For measurement of negative number differenge,
= —q, the fidelity after teleportation is

PR state,a=3. As the degree of decoherence is increased, the
= " — —A E 2 2ym+q’ym'+q’ fidelity drops away quickly. This is because the off-diagonal
—,y(q ) ’ |Cm| |Cm'| . : « "
P_(a") mm=o matrix elements op,g are being “washed out” by then(
P —n")? term in the exponential. Physically, we are reducing
X g~ Hm=m)T (36)  the entanglement between the resource modes by making

measurement of phase more random, and we would expect
where the ability of the technique to teleport a state to decrease;
Fig. 6 shows this effect explicitly.

©

P_(q")=(1-\2) 2 |cyPA2m+a"), (37) _
m=0 C. Beam-splitter resource

o i We add noise to the beam-splitter resource state in the
The average fidelity as a function of degree of decoherencegme manner as described in Sec. VA, obtaining the total
v, iIs shown in Fig. 5 and behaves as we would expect; deétate

coherence in the resource reduces the output quality of the

protocol implying that the entanglement available as a re- * 2N L
source for teleportation has decreased. PTAB= D > cmChdy ek, e T
mm’'=0 n,n"=0
B. Ideal resource X|my(m'|@|n)a(n’|®|2N—n)g(2N—n'].
Applying our decoherence model to E@) and averaging (40

over all realizations of the phase, we obtain the total state:

" N After the teleportation protocol, we find that the fidelity with
prag= 1 2 E C.Ct e y(n—n')2 respect to the initial state is given by
N+1 m’

mm’'=0 n,n"=0

min(q,2N)
X|m)r(m’|@[N—-n)a(N—n'|@[n)g(n’[, (38) FBS,y(Q):m > leqonllegonl?
n,n' =0
where vy is the degree of decoherence as before. After NPT
. ONeTenee: xd,_nc¥, e Y ) (41)
completion of the protocol, the fidelity is given by n—-Nn/—N .
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0.5 . - - - - whereP1,(w) is the probability that the joint measurement
on A andT gives the resultv. It can be shown that
0.4t ps(x|0)=p+(x), (44)
pPa(X|1)=pr(—x), (45)

Fps 03 where— is the logicaINOT operation. The receive® knows
the result of the joint measurement and can implement a
local NOT operation if the result of the measurement is 1.
Given that local operation, we see that the state of the re-
ceiver,p3'(x) = pg(x®w|w), is now identical to the state of
the target bit, that is to say it has exactly the same probability
0 005 01 015 02 025 03 distripution_. A little thought shoyvs the protpcol just'
v descrlbt_ad is exactly what would be implemented in the origi-
nal qubit protocol if the shared resource betweeand B
FIG. 7. Average fidelity as a function of degree of decoherenceyvere the completely decohered stafe,g=(|00)(00|
v, with a beam-splitter resource energy correspondintyl $0100. +]11)(11])/2. Note that in this case the only information
Target is a coherent state of amplitude= 3. that can be “teleported” is the probability distribution for
the target bit in the basis in whigh,g is diagonal.
As we can see in Fig. 7, the fidelity decreases due to For all three entanglement resources considered, it can be
decoherence in the resource, except that the fidelity deshown that the average fidelity in the fully decohered limit
creases from approximatelyinstead of 1 as in Sec. lll. (y—<) reduces to

0.2p

0.1

VI. FULL DECOHERENCE AND THE CLASSICAL LIMIT Ew: 2 |Cn|4- (46)
n=0

Full decoherence corresponds to no entanglement be-
tween the resource modes and a completely flat phase probor example, if the target is a coherent state, then this may
ability distribution. A flat phase probability distribution is pe shown to be
equivalent to taking the limity— in the fidelities of Sec.
V, thus making the off-diagonal terms in the density matrix — lo(2]a|?)
representing the output statg,,g, zero. Physically, this F(“):W- (47)
limit corresponds to retaining the number correlations but

making a measurement of phase completely arbitrary. Wepjg is the fidelity between a pure state and a totally mixed
now suggest that this may be consideredassicallimit of  gtate with the same photon number distribution. We conclude
the teleportation protocol. __that if the resource contains only classical intensity correla-
To motivate this point of view, we analyze a classicaljong it is only possible to teleport the number distribution of
analog of the original qubit teleportation protod8l. Con-  he target state: no phase information is teleported. In the

si_der three classical bit$, A,B, whereA andB are correlated_ sense of the qubit discussion in the preceding paragraph, we
bits shared between the sender and receiver, respectively,| ihis the classical limit of the protocal.

The bit labeledT is the target bit and its state is specified by
a distribution,pt(x), over the values of the binary variable.

The bitsA andB are correlated and have the state VIl. CONCLUSIONS

We have shown that a teleportation scheme involving

PAB(X,Y) =736y, (420  coupled oscillator states using number sum and phase differ-
ence measurements is possible, given sufficiently large num-
|bers of Fock states in the resource. The ability of the scheme
to reliably teleport a state was shown to improve as the num-
ber of Fock states in the resource increases. In the case of the
beam-splitter-generated resource, this physically means more
otons incident on the beam-splitter ports.
We have illustrated the effects of decohererioe the
fform of phase diffusionin three entanglement resources
(ideal, beam-splitter-generated, and squeezed)siatthe fi-
delity of teleportation and have related this qualitatively to
the change in entanglement of the resource. The decoherence
maintains the classical intensity correlation inherent in the
2y, 2PT(Z2)PA(X,Y) S, zex (43  resource. In the limit of complete decoherence, the degraded

Pra(w) ' state is only capable of teleporting the number distribution of

whered, , is the usual Kronecker delta. The total state of al
three bits i1(z) pag(X,y). We now suppose that the sender
can measure the quantizyd x (addition mod2 on bitsT and
A. The result of this measurement is O if bdttand A have
the same value and 1 if they have different values. ThePh
senderA communicates this result to the receigr

The conditional state of the receiver—given the result o
the measurementy—is given by standard Bayesian condi-
tioning as

Pe(y|w)=
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