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Teleportation using coupled oscillator states
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We analyze the fidelity of teleportation protocols, as a function of resource entanglement, for three kinds of
two-mode oscillator states: states with fixed total photon number, number states entangled at a beam splitter,
and the two-mode squeezed vacuum state. We define corresponding teleportation protocols for each case
including phase noise to model degraded entanglement of each resource.
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I. INTRODUCTION

Quantum entanglement plays a central role in the em
ing fields of quantum computation@1–5#, quantum cryptog-
raphy @6,7#, quantum teleportation@8–13#, dense coding
@14#, and quantum communication@15–17#. The character-
ization of entanglement is a challenging problem@18–23#
and considerable effort has been invested in characteri
entanglement in a variety of contexts@24–30#.

One such context, quantum teleportation, has playe
crucial role in understanding how entanglement can be u
as a resource for communication. Recent experimental d
onstrations@31,32# suggest that quantum teleportation cou
be viewed as an achievable experimental technique to q
titatively investigate quantum entanglement. Teleportatio
a way of transmitting an unknown quantum state to a dis
receiver with far better reliability than can be achieved cl
sically. As the entanglement of the enabling resource is
graded, the fidelity of the teleportation protocol is dimi
ished.

In this paper, we attempt to make this intuition more p
cise using specific examples from quantum optics. Three
tangled resources are considered: states with fixed total
ton number, number states entangled at a beam splitter,
the two-mode squeezed vacuum state@33#. The examples we
discuss exhibit quantum correlations between the pho
number in each mode and, simultaneously, between
phase of each mode.

In reality, the entanglement will not be perfect, but d
graded to some extent by uncontrolled interactions with
environment during formation. To model this, we consid
phase fluctuations on each mode independently. In the l
of completely random phase, we are left with only the cl
sical intensity~photon number! correlations. The state is n
longer entangled and the fidelity of the protocol depen
only on the classical intensity correlations remaining in
resource.

II. ENTANGLEMENT AND TELEPORTATION

Intuitively entanglement refers to correlations betwe
distinct subsystems that cannot be achieved in a clas
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statistical model. Of course correlations can exist in class
mechanics, but entanglement refers to a distinctly differ
kind of correlation at the level of quantum probability am
plitudes. The essential difference between quantum and c
sical correlations can be described in terms of the separa
ity of states@34–41#. A density operator of two subsystem
is separable if it can be written as the convex sum@39#

r5(
A

wArA8 ^ rA9 , ~1!

whererA8 andrA9 are density matrices for the two subsystem
and thewA are positive weights satisfying(AwA51. For
example, for two harmonic oscillators~a andb! the density
operator which has correlated energy

rab5 (
n50

`

pnun,n&^n,nu ~2!

is separable~where we use the notationun,n&5un&a^ un&b)
while the pure state

uC&ab5 (
n50

`

Apnun,n& ~3!

has the same classical correlation but is not separable. In
form, we see that is possible for a separable and an entan
state to share similar classical correlations for some v
ables.

Consider a communication protocol in which the resu
of measurements made on a physical system are transm
to a distant receiver. The goal of the receiver is to reconst
the physical state of the source, using only local resour
conditioned on the received information. The communicat
that takes place is of course entirely classical. In a telepo
tion protocol there is one additional feature: quantum cor
lations ~entanglement! are first shared between the sendi
and receiving station. The degree of entanglement share
sender and receiver is called the teleportationresource. If
there is no shared quantum correlation between the se
and receiver, the protocol is called classical.

The extent and nature of the quantum correlations in
resource determine the fidelity of the protocol. Under id
conditions, the unknown state of some physical system at
transmitting end can be perfectly recreated in another ph
cal system at the receiving end. There are many ways
©2000 The American Physical Society07-1
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which actual performance can differ from the ideal. In th
paper, we analyze the change in the performance of tele
tation protocols as the degree of entanglement in the reso
is varied by decoherence. Our primary objective is to use
fidelity of a teleportation protocol to compare and contr
different kinds of entangled oscillator states.

A general teleportation protocol proceeds as follows. T
sender, Alice, has atarget state,uc&T , that she wishes to
teleport to Bob, the receiver. Alice and Bob each have acc
to one part of an entangled bipartite physical system p
pared in the stateuc&AB . In this paper, the bipartite physica
system is a two-mode electromagnetic field. In order to s
the state of the target to Bob, Alice performs a joint me
surement on the target and her mode. She then send
information gained from these measurements to Bob vi
classical channel. Bob performs local unitary transformati
on the mode in his possession according to the informa
Alice sends to him, thereby attempting to recreate the ini
target state. We quantify the quality of the protocol by t
probability that Bob’s received state is the same as the ta
state. This quantity is known as thefidelity.

The fidelity of quantum teleportation protocol is dete
mined by the degree of shared entanglement, the qualit
the measurements made by the sender, the quality of
classical communication channels used, and how well B
can implement the desired unitary transformations. In t
paper, we will discuss only the first of these; the amount
shared entanglement. In the original teleportation proto
@8#, the bipartite system was made up of two systems e
described by a two-dimensional Hilbert space, that is to s
two qubits, and the shared entangled state was amaximally
entangled state@19#. In the case of two correlated harmon
oscillators, or two field modes, we cannot define maxim
entanglement in quite the same way, as the entropy of e
component system can be arbitrarily large. In this paper,
define extremal entangled pure states of two field mode
terms of the total mean photon number and the total m
mum photon number.

In the case of a system with a finite-dimensional Hilb
space, a state of maximum~von Neumann! entropy is simply
the identity operator in that Hilbert space. A natural gen
alization of this idea to infinite Hilbert spaces would define
maximum entropy state subject to some constraint, suc
mean energy or total energy. These of course define the
nonical ensemble and microcanonical ensemble of statis
mechanics. In the case of entangled pure states, the A
Lieb @42# inequality indicates that the entropy of each co
ponent system is equal. As the entropy of a harmonic os
lator scales with mean energy, this indicates that e
component subsystem has the same mean energy. I
maximize the entropy of each subsystem subject to a c
straint on the mean energy, the state must be a thermal s
The entangled pure two-mode state, for which the redu
density operator of each mode is thermal, is the squee
vacuum state,

ul&5~12l2!1/2(
n50

`

lnun,n&. ~4!
06230
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The mean photon number in each mode is given byn̄
5l2/(12l2). If, however, we constrain the total photo
number,N, of each mode, we get a very different express
for a maximally entangled state,

uN&5
1

A11N
(
n50

N

uN2n,n&. ~5!

The entropy of the reduced state of each mode is ln(11N)
while the mean photon number isN/2. While squeezed
vacuum states may be achieved in the laboratory, states
fixed total photon number have a not been produced, and
not be possible until we have a reliableN photon source.
There are now a couple of proposals for such sources@43–
45# and it may not be too long before they are used in te
portation schemes.

Teleportation fidelity for infinite-dimensional Hilber
spaces must necessarily vary from unity for an arbitrary
get state, as the notion of a maximally entangled resou
differs from the finite-dimensional case. The teleportati
protocol can also be degraded by unknown incoherent p
cesses that corrupt the purity of the shared entanglemen
course, in some cases these incoherent processes ma
stroy the correlations entirely, for example by absorbing
the photons in each mode before Alice and Bob get to
them. In this paper, however, we will only consider tho
decoherence processes that change the purity of the s
and leave unchanged the classical intensity correlations.

III. IDEAL RESOURCE

In a recent paper by Milburn and Braunstein@33#, a tele-
portation protocol was presented using joint measurem
of the photon number difference and phase sum on two fi
modes. This protocol is possible because the number dif
ence and phase sum operators commute, thus allowing d
mination of these quantities simultaneously and to arbitr
accuracy.

Number sum and phasedifferenceoperators also com
mute, implying that if eigenstates of these operators can
found, then a teleportation protocol is possible. Such a p
tocol is discussed below. Recently, teleportation using nu
ber sum and phase difference measurements was desc
@46#. That work did not address how the degree of entang
ment in the resource changes the teleportation fidelity as
do here.

Because the number sum and phase difference oper
commute, we look for simultaneous eigenstates of these
servables. Consider states of the form

uc&AB5 (
n50

N

dnuN2n&Aun&B ~6!

which are eigenstates of number sum with eigenvalueN. The
labelsA andB refer to the sender’s and receiver’s compone
of the entangled modes, respectively, and thedn satisfy
(nudnu2. This state will be maximally entangled when thedn
are all equal, giving the resource
7-2
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uc&AB5
1

AN11
(
n50

N

uN2n&Aun&B . ~7!

This state tends towards eigenstates of phase differenc
N→`. To see this, consider the joint phase probability d
sity of Eq. ~7!, which is determined by the ideal joint phas
operator projection operatorufA&^fAu ^ ufB&^fBu as
P(fA ,fB)5tr(rABufA&^fAu ^ ufB&^fBu), where@47–49#

uf&5 (
n50

`

einfun&. ~8!

Substituting the state in Eq.~6!, we have

P~fA ,fB!5
1

N11 U(n50

N

einf2U2

, ~9!

wheref25fA2fB . The probability density as a functio
of N andf2 is shown in Fig. 1 and indicates that the dens
becomes sharply peaked aboutf250 in the interval@2p,
p# asN gets larger. Hence the states of Eq.~7! tend to eigen-
states of phase difference with increasingN.

The state to be teleported, the target state, can be wr
in the general form

uc&T5 (
m50

`

cmum&T . ~10!

The input state to the protocol is then

uc&5
1

AN11
(

m50

`

(
n50

N

cmum&TuN2n&Aun&B . ~11!

If Alice measures the number sum of the target and her c
ponent of the entangled resource~i.e., N̂A1N̂T) with result
q, the conditional state of the total system is

FIG. 1. Joint phase probability density. AsN increases, the
probability density becomes very narrowly peaked aboutf250.
The f2 axis is in units ofp.
06230
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uc~q!&5@PI~q!~N11!#21/2

3(
n

cq2N1nuq2N1n&TuN2n&Aun&B , ~12!

where n runs from max(0,N2q) to N. The probability of
obtaining the resultq is

PI~q!5
1

N11 (
n

ucq2N1nu2. ~13!

The subscriptI emphasizes that this probability refers to t
idealized resource. Alice now measures the phase differe
with resultf2 . The conditional state of Bob’s mode is the
the pure state

uc~q,f2!&B5@PI~q!~N11!#21/2(
n

e2inf2cq2N1nun&B .

~14!

Using the resultsq andf2 , and knowledge of the number o
Fock states in the resource~N!, Bob has sufficient informa-
tion to reproduce the target state. He does this by amplify
his mode so thatun&B→uq2N1n&B and phase shifting it by
e2 i2nf2. The unitary amplification operation is described
@50#. These operations complete the protocol, and the s
Bob finally has in his possession is

uc~q!&out,B5@PI~q!~N11!#21/2(
n

cq2N1nuq2N1n&B .

~15!

The fidelity of this protocol depends on the resultq and is

FI~q!5(
n

ucq2N1nu2 ~16!

5~N11!PI~q!. ~17!

As the fidelity depends on the result of the number s
measurement, it varies from one run to the next. To obtain
overall figure of merit for the protocol, we define the avera
fidelity,

F̄ I5(
q

FI~q!P~q!. ~18!

In this case, we find

F̄ I5~N11! (
q50

`

PI~q!2. ~19!

To see how well the teleportation protocol performs, w
shall consider some examples.

Let the target state be a number state,

uc&T5um&T , ~20!

so the only coefficient available iscm , which is 1. We find
that the teleportation fidelity is unity, independent of t
7-3
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measurement ofq, because the only term appearing in t
summations of both the fidelity and the probability is th
corresponding tocm . Hence, this protocol works perfectly
the target is a number state.

In Fig. 2, we show the average fidelity as a function of t
total photon number in the resource for a coherent state
get with amplitudea53. It is clear that increasing the num
ber of photons in the entangled resource improves the t
portation protocol.

FIG. 2. Average fidelity as a function of the energy in the ide
resource,N, for a coherent state of amplitudea53.
c
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IV. BEAM-SPLITTER RESOURCE

The resource states discussed in Sec. III illustrate the
tocol well, but are not produced by any known physical
teraction. However, the beam-splitter interaction can
shown to give a resource with similar properties to Eq.~7!.
The beam-splitter interaction is described by@51#

uc&AB5ei ~p/5!~a†b1ab†!uN&AuN&B , ~21!

where the operatorsa, a†, b, and b† are the usual boson
annihilation and creation operators for modesA andB, andN
is the number of photons at each input port of the be
splitter. Because the number sum of the two modes is a c
stant (52N), we can rewrite the resource in terms of eige
states of the number sum. The resource is now written a

uc&AB5 (
n50

2N

dn2Nun&Au2N2n&B . ~22!

The coefficientsdn2N are derived by first using Schwinger’
boson representation of angular momentum, with total an
lar momentum quantum numberj 5N, and then identifying
these coefficients as rotation matrix elements@51#. Thedn2N
coefficients are defined by

dn2N5e2 i ~p/2!~n2N!Dn2N,0
N ~p/2!, ~23!

where

l

Dm8,m
j

~b!5@~ j 1m8!! ~ j 2m8!! ~ j 1m!! ~ j 2m!! #1/2(
s

~21!m82m1sS cos
b

2 D 2 j 1m2m822sS sin
b

2 D m82m12s

~ j 1m2s!!s! ~m82m1s!! ~ j 2m82s!!
. ~24!
de
urce
s a

is
p-
the

ed
uld
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g
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but
The variables ranges over all integer values where the fa
torials are non-negative@52#. It is easy to verify that all co-
efficients withn odd are zero.

This protocol proceeds identically to that discussed
Sec. III. We illustrate this variation of the protocol with th
pure state form of the resource as given in Eq.~22!. After a
number sum and phase difference measurement on modT
and A, and then applying the amplificationu2N2n&B→uq
2n&B and phase shifte22inf2, the output state becomes

uc~q!&out,B5@PBS~q!#21/2 (
n50

min~q,2N!

cq2ndn2Nuq2n&B ,

~25!

where the probability for a number sum resultq is

PBS~q!5 (
n50

min~q,2N!

ucq2nu2udn2Nu2. ~26!

The teleportation fidelity is found to be
-

n

s

FBS~q!5
1

PBS~q!
U (

n50

min~q,2N!

ucq2nu2dn2NU2

. ~27!

If we again consider a coherent state target of amplitu
a53, we can compare the beam-splitter-generated reso
with the ideal resource in Sec. III. The average fidelity a
function of energy in the resource is shown in Fig. 3 and
almost identical to Fig. 2 except that its maximum is a
proximately one-half as opposed to unity. This is due to
fact that all terms in Eq.~22! with n odd are zero. Effectively
only half of the perfect correlations in the ideal entangl
resource are available, hence the maximum fidelity we wo
expect under such circumstances is 0.5. Even so, the
becomes a better teleportation resource with increasinN
~see Fig. 3!.

It is, however, possible to teleport those states which h
no odd photon number components with near unit fidel
An example is the even ‘‘cat’’ state, formed from the supe
position of two coherent states of equal real amplitude
opposite sign@53#,
7-4
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uc&T5
ua&T1u2a&T

A212e22uau2
. ~28!

The average fidelity in this case is shown in Fig. 4. T
result implies that it may be possible to tailor resources
given applications so that certain classes of states ma
teleported well, without necessarily being able to teleport
arbitrary state.

V. DECOHERENCE

Teleportation requires quantum correlations, in the fo
of entanglement, to be shared by the sender and receive
this section we consider how teleportation fidelity change
decoherence diminishes the extent of the correlation. We
a decoherence mechanism~phase diffusion!, which does not
change the intensity~photon number! correlations of the en-
tanglement resource but does destroy the coherence in
number basis.

Phase diffusion is modeled by adding random phase fl

FIG. 3. Average fidelity as a function of energy in the bea
splitter resource,N, for a coherent state of amplitudea53.

FIG. 4. Average fidelity as a function of the energy in the bea
splitter resource,N, for a ‘‘cat’’ state of amplitudea53.
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tuations to each mode independently with the unitary ope
tor

U~u![exp@2 i ~uaa†a1ubb†b!#, ~29!

where the phase sum and differenceu5ua6ub is taken to be
Gaussian randomly distributed with a zero mean and v
ances,

P~u!5
1

A2ps
expS 2

u2

2s D . ~30!

Even though a Gaussian distribution is not periodic, it can
taken to be an approximation of a true periodic distributio
such as cos2N(u2u0), which for sufficiently largeN is ap-
proximately Gaussian nearu0 with a variance of 1/2N.

A. Squeezed-state resource

Reference@33# describes a teleportation protocol usin
two-mode squeezed vacuum states as an entanglemen
source together with number difference and phase sum m
surements. The resource for this protocol is written in
Fock basis as

uc&AB5A12l2(
n50

`

lnun&Aun&B . ~31!

The entanglement between resource modes may be al
by changing the squeezing parameter,l, and by decohering
the resource using phase diffusion. Applying the phase s
U(u) and averaging over all realizations of the phase gi
the resource as a density operator

rAB5~12l2! (
n,n850

`

lnln8e2g~n2n8!2
un&A^n8u ^ un&B^n8u,

~32!

whereg5s/2 describes the degree of decoherence.
The number difference measurement can give a posi

or negative result and we consider each case separate
the state to be teleported isrT5(m,m8cmcm8

* um&^m8u, the
output state at the receiver, conditioned on the positive nu
ber difference,q, is

rout,B5
12l2

P1~q! (
n,n850

`

cn1qcn81q
* lnln8

3e2g~n2n8!2
un1q&B^n81qu, ~33!

with a corresponding fidelity given by

F1,g~q!5
12l2

P1~q! (
n,n850

`

ucn1qu2ucn81qu2lnln8e2g~n2n8!2
,

~34!

where

-

-

7-5
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P1~q!5~12l2! (
n50

`

ucn1qu2l2n ~35!

is the probability of obtaining a resultq for photon number
difference measurements at the sender, which does no
pend on the decoherence.

For measurement of negative number difference,q8
52q, the fidelity after teleportation is

F2,g~q8!5
12l2

P2~q8! (
m,m850

`

ucmu2ucm8u
2lm1q8lm81q8

3e2g~m2m8!2
, ~36!

where

P2~q8!5~12l2! (
m50

`

ucmu2l2~m1q8!. ~37!

The average fidelity as a function of degree of decohere
g, is shown in Fig. 5 and behaves as we would expect;
coherence in the resource reduces the output quality of
protocol implying that the entanglement available as a
source for teleportation has decreased.

B. Ideal resource

Applying our decoherence model to Eq.~7! and averaging
over all realizations of the phase, we obtain the total sta

rTAB5
1

N11 (
m,m850

`

(
n,n850

N

cmcm8
* e2g~n2n8!2

3um&T^m8u ^ uN2n&A^N2n8u ^ un&B^n8u, ~38!

where g is the degree of decoherence as before. A
completion of the protocol, the fidelity is given by

FIG. 5. Average fidelity as a function of degree of decoheren
g, for a two-mode squeezed vacuum resource with a squee
parameter value ofl50.8. Target is a coherent state of amplitu
a53.
06230
e-
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FI ,g~q!5
1

N11

1

PI~q! (
n,m8

ucq2N1nu2ucp2N1n8u
2e2g~n2n8!2

,

~39!

wheren and n8 run from max(0,N2q) to N and PI(q) is
given by Eq.~13!. It is not difficult to show that by setting
g50 we reproduce the result without noise, Eq.~17!.

The average fidelity as a function of the degree of de
herence,g, is shown in Fig. 6 for the example of a cohere
state,a53. As the degree of decoherence is increased,
fidelity drops away quickly. This is because the off-diagon
matrix elements ofrAB are being ‘‘washed out’’ by the (n
2n8)2 term in the exponential. Physically, we are reduci
the entanglement between the resource modes by ma
measurement of phase more random, and we would ex
the ability of the technique to teleport a state to decrea
Fig. 6 shows this effect explicitly.

C. Beam-splitter resource

We add noise to the beam-splitter resource state in
same manner as described in Sec. V A, obtaining the t
state,

rTAB5 (
m,m850

`

(
n,n850

2N

cmcm8
* dn2Ncn82N

* e2g~n2n8!2

3um&T^m8u ^ un&A^n8u ^ u2N2n&B^2N2n8u.

~40!

After the teleportation protocol, we find that the fidelity wit
respect to the initial state is given by

FBS,g~q!5
1

PBS~q! (
n,n850

min~q,2N!

ucq2nu2ucq2n8u
2

3dn2Ncn82N
* e2g~n2n8!2

. ~41!

e,
ng FIG. 6. Average fidelity as a function of degree of decoheren
g, with an ideal resource energy corresponding toN5100. Target is
a coherent state of amplitudea53.
7-6
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As we can see in Fig. 7, the fidelity decreases due
decoherence in the resource, except that the fidelity
creases from approximately12 instead of 1 as in Sec. III.

VI. FULL DECOHERENCE AND THE CLASSICAL LIMIT

Full decoherence corresponds to no entanglement
tween the resource modes and a completely flat phase p
ability distribution. A flat phase probability distribution i
equivalent to taking the limitg→` in the fidelities of Sec.
V, thus making the off-diagonal terms in the density mat
representing the output state,rout,B , zero. Physically, this
limit corresponds to retaining the number correlations
making a measurement of phase completely arbitrary.
now suggest that this may be considered aclassicallimit of
the teleportation protocol.

To motivate this point of view, we analyze a classic
analog of the original qubit teleportation protocol@8#. Con-
sider three classical bits,T,A,B, whereA andB are correlated
bits shared between the sender and receiver, respecti
The bit labeledT is the target bit and its state is specified
a distribution,pT(x), over the values of the binary variabl
The bitsA andB are correlated and have the state

pAB~x,y!5 1
2 dx,y , ~42!

wheredx,y is the usual Kronecker delta. The total state of
three bits ispT(z)pAB(x,y). We now suppose that the send
can measure the quantityz% x ~addition mod2! on bitsT and
A. The result of this measurement is 0 if bothT andA have
the same value and 1 if they have different values. T
senderA communicates this result to the receiverB.

The conditional state of the receiver—given the result
the measurement,w—is given by standard Bayesian cond
tioning as

pB~yuw!5
(x,zpT~z!pAB~x,y!dw,z% x

PTA~w!
, ~43!

FIG. 7. Average fidelity as a function of degree of decoheren
g, with a beam-splitter resource energy corresponding toN5100.
Target is a coherent state of amplitudea53.
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wherePTA(w) is the probability that the joint measureme
on A andT gives the resultw. It can be shown that

pB~xu0!5pT~x!, ~44!

pB~xu1!5pT~¬x!, ~45!

where¬ is the logicalNOT operation. The receiverB knows
the result of the joint measurement and can implemen
local NOT operation if the result of the measurement is
Given that local operation, we see that the state of the
ceiver,pB

out(x)5pB(x% wuw), is now identical to the state o
the target bit, that is to say it has exactly the same probab
distribution. A little thought shows the protocol jus
described is exactly what would be implemented in the or
nal qubit protocol if the shared resource betweenA and B
were the completely decohered staterAB5(u00&^00u
1u11&^11u)/2. Note that in this case the only informatio
that can be ‘‘teleported’’ is the probability distribution fo
the target bit in the basis in whichrAB is diagonal.

For all three entanglement resources considered, it ca
shown that the average fidelity in the fully decohered lim
(g→`) reduces to

F̄`5 (
n50

`

ucnu4. ~46!

For example, if the target is a coherent state, then this m
be shown to be

F̄~a!5
I 0~2uau2!

e2uau2
. ~47!

This is the fidelity between a pure state and a totally mix
state with the same photon number distribution. We concl
that if the resource contains only classical intensity corre
tions, it is only possible to teleport the number distribution
the target state: no phase information is teleported. In
sense of the qubit discussion in the preceding paragraph
call this the classical limit of the protocol.

VII. CONCLUSIONS

We have shown that a teleportation scheme involv
coupled oscillator states using number sum and phase di
ence measurements is possible, given sufficiently large n
bers of Fock states in the resource. The ability of the sche
to reliably teleport a state was shown to improve as the nu
ber of Fock states in the resource increases. In the case o
beam-splitter-generated resource, this physically means m
photons incident on the beam-splitter ports.

We have illustrated the effects of decoherence~in the
form of phase diffusion! in three entanglement resource
~ideal, beam-splitter-generated, and squeezed-state! on the fi-
delity of teleportation and have related this qualitatively
the change in entanglement of the resource. The decoher
maintains the classical intensity correlation inherent in
resource. In the limit of complete decoherence, the degra
state is only capable of teleporting the number distribution

e,
7-7
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the target state. As this result would have been obtained
ing standard Bayesian conditioning in a classical probab
tic protocol, we argue that it defines a classical limit for t
quantum scheme.
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