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We outline a scheme to accomplish measurements of a solid state double well system(DWS) with both one
and two electrons in nonlocalized bases. We show that, for a single particle, measuring the local charge
distribution at the midpoint of a DWS using a SET as a sensitive electrometer amounts to performing a
projective measurement in the parity(symmetric/antisymmetric) eigenbasis. For two-electrons in a DWS, a
similar configuration of SET results in close-to-projective measurement in the singlet/triplet basis. We analyze
the sensitivity of the scheme to asymmetry in the SET position for some experimentally relevant parameter,
and show that it is experimentally realizable.
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I. INTRODUCTION

In this paper, we present a scheme for performing mea-
surements of one- and two-electron double well systems
(DWSs) in nonlocal bases. The principle idea behind both
schemes is to detect the small charge differences at the mid-
point of the DWS for different electronic states using a single
electron transistor(SET) as a sensitive electrometer. SET’s
have been demonstrated to be highly sensitive electrometers,
with sensitivities of a fewme/ÎHz.1–3 We therefore expect
that they could detect fluctuations of around 1% of an elec-
tron charge in around 10–100 ns.

For the one electron case, the measurement is in the parity
eigenbasis. This is interesting since it results in projection
onto nonlocal states. It has been shown theoretically4 and
experimentally5 that decoherence is slower for evenly biased
DWS, so this kind of measurement may be more robust
against decoherence. This problem has been considered
recently.23

For a two-electron system we show that this measurement
approximately projects the DWS onto the singlet(even) and
triplet (odd) subspaces. It is therefore a method for perform-
ing spin sensitive detection using electrometers, which is im-
portant for readout of certain quantum information process-
ing schemes.6

The paper begins in Sec. II with a short, generic discus-
sion of the microscopic model of a few-electron system in-
teracting with an idealized SET, itself in contact with a con-
tinuum of lead modes. Following this, in Sec. III we deal
with the single electron case, and in Sec. IV we deal with the
two-electron case. Within each of these two sections we de-
velop the measurement Hamiltonian from microscopic con-
siderations, from which we derive measurement and mixing
times. After showing in each case that the measurements
work in principle, we estimate the effects of a significant
problem in the fabrication of this device, namely the preci-
sion with which the SET island must be placed in the mid-
plane of the DWS. In Sec. V we conclude the paper with
a discussion about experimental implementation of the
scheme.

II. SYSTEM

We consider the device pictured in Fig. 1, consisting of a
SET placed in the mid-plane of the DWS, in order to be
sensitive to the charge at the midpoint. This charge differs
between symmetric and antisymmetric spatial wavefunc-
tions, and we analyze a scheme to measure this difference in
order to effect projective measurements onto the parity
eigenspaces.

For the purposes of this paper, we assume the SET island
has only a single accessible energy level, which is reasonable
if the island is small and the difference between Fermi ener-
gies in the leads is less than the charging energy of the is-
land. We model the DWS with a Hubbard Hamiltonian, with
only a single spatial wavefunction per well,uLl and uRl for
the left and right wells. We assume that the Hilbert space for
the system is therefore two-dimensional, which is reasonable
if higher excited states are inaccessible due to the strong
confinement of the quantum dot potentials. Therefore, each
well may be populated by at most two electrons, in different
spin configurations.

The Hamiltonian for a system of interacting electrons is
given by

HTot = o
i j ,s

Hijcis
† cjs +

1

2 o
i jlm,ss8

Vijmncjs
† cns8

† cms8cis, s1d

whereci,s is a (fermionic) annihilation operator for an elec-
tron in spatial modei and spinsP h↑ , ↓ j7 and

FIG. 1. Schematic of the physical system under
consideration.
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Hij =E d3r fi
*sr d„− "2¹2/2m+ Usr d…f jsr d, s2d

Vijmn =E d3r 1E d3r 2 f j
*sr 1dfisr 1dVsur 1 − r 2udfn

*sr 2dfmsr 2d,

s3d

wherefisr d=kr ucis
† ul is the spatial wavefunction for modei

(assuming both spin states have the same spatial wavefunc-
tion), u l is the “vacuum” state, with no quasi-particle excita-
tions, m is the effective mass,Usrd is the electrostatic con-
fining potential andVsrd=e2/4p«0r =q/ r is the Coulomb
potential.

We choose a basis set such thatHij is diagonal, which we
truncate to the lowest two eigenstates for the DWS, and a
single state,s, on the SET. In the absence of an external bias
between the wells, this corresponds to takingi , j P h+,−,sj,
where 6 are the symmetric and antisymmetric superposi-
tions of the localized, single-particle states, referred to here
as the parity eigenbasis. That is u± l=c±

†ul
=suLl± uRld /Î2s1±kRuL u ld. The first term of Eq.(1) be-
comes ossD /2dsn̂+s− n̂−sd+v0n̂s, where n̂is=cis

† cis and D
=H++−H−− is the tunneling rate of a localized electron,
which we estimate in Sec. V.

Expanding Eq.(1) gives

HTot = Hisland+ Hleads+ Htun + HHub + V̂, s4d

whereHHub is the Hubbard Hamiltonian for the DWS,V̂ is
the Hamiltonian for the interaction between the DWS and the
SET and

Hisland= v0n̂s, s5d

Hleads= o
k

vksn̂lk + n̂rkd, s6d

Htun = o
k

Tlkclk
† cs + Trkcrk

† cs + H.c. s7d

Herev0 is the island energy level, in the absence of interac-
tions with the double well potential,vk are the energies of
densely spaced lead modes,l and r denote the left and right
leads, respectively,Tlsrdk are the corresponding tunneling rate
between modek in lead lsrd and the SET island.

To computeV̂ we assume that the wavefunction for elec-
trons on the SET island vanishes in the region where the
wavefunction for the electron on the DWS has support, and
vice versa, so that, for instance,f+

* sr dfssr d=0. This assump-
tion is a good one for systems such as the Kane proposal,8 or
Na+ in Si,9 where the tunneling rate between the SET island
and the DWS are negligible.

The consequence of this assumption is that if any index in
Vijmn is s, thenVijmn is zero unlessi = j =s or m=n=s, where
s labels an electron on the SET island. Therefore the only
Coulomb terms that contribute to the interaction between the
SET island and the DWS are given by

V̂ = o
i,jPh+,−j

Vssijn̂scis
† cjs = n̂s ^ Hmeas, s8d

where we have ignored the spin degree of freedom on the
SET island. There are four distinct terms of this form that
need to be included, fori, j taking the four possible assign-
ments of1 or 2. If the physical arrangement of the double
well and island as shown in Fig. 1 is symmetric about a line
bisecting the double well potential, thene;Vss+−=Vss−+=0,
as discussed in Appendix B. Asymmetry results in nonzeroe,
and for the development of this section, we assume that it is
symmetric, so thate=0. Thus, to describe a DWS interacting
with a SET we need to specifyHHub andHmeas.

III. PARITY MEASUREMENT FOR SINGLY OCCUPIED
DWS

The system we consider in this section consists of a single
electron shared between two wells, so we ignore spin indi-
ces. We now establish the feasibility of performing a mea-
surement in the parity eigenbasis of a single electron shared
between the two wells.

A. Derivation of measurement Hamiltonian

For a single electron on an unbiased double well, the in-
teraction terms of Eq.(1) vanishes, so the Hubbard Hamil-
tonian for the single-particle system is given by

HHub = Dn̂+. s9d

We have used the fact that, for a single-particle, two-level
system n̂++ n̂−= I is the identity, and have also discarded
terms proportional toI. In an alternate notation, we identify
n̂+ with the sx= uLlkRu+ uRlkLu operator.

For the symmetric case,

V̂ = n̂s ^ sVss++n̂+ + Vss−−n̂−d = dn̂sn̂+, s10d

where d=Vss++−Vss−− and we have again used the single-
particle, two-level system identityn̂++ n̂−= I. It is evident
from Eqs. (9) and (10) that the measurement Hamiltonian
and the system Hamiltonian have the same energy eigen-
states. Therefore, the measurement process will nondestruc-
tively project onto energy eigenstates of the DWS, which are
the delocalized symmetric and antisymmetric wavefunctions.
That is, it is a QND(quantum nondemolition) measurement,
which simplifies the analysis greatly.

B. Master equation for symmetric system

As discussed in Appendix A, the master equation for the
DWS and SET island is given by

Ṙstd = − ifHHub + Hisland,Rstdg + sgl + grdDfn̂−cs
†gRstd

+ gr8Dfn̂+csgRstd + gl8Dfn̂+cs
†gRstd, s11d

whereR is the density matrix for the DWS and SET island
and DfAgB;JfAgB−AfAgB;ABA†− 1

2sA†AB+BA†Ad. We
assume that the reduced state of the SET island is diagonal in
the number representation, so
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R→ r0 ^ u0lsk0u + r1 ^ u1lsk1u. s12d

The reduced density matrix of the DWS is given byrstd
=TrshRstdj=r0std+r1std. In Appendix A we solve Eq.(11)
and the steady-state reduced density matrix of the DWS is

TrshRs`dj = rs`d = sr0
++s0d + r1

++s0ddn̂+ + sr0
−−s0d

+ r1
−−s0ddn̂−, s13d

whererpq=kpuruql. This shows that the diagonal elements of
the system density matrix are unchanged, while the off-
diagonal elements have completely decayed, which corre-
sponds to QND measurement.

C. Measurement time

Since the measurement for the single-electron case is a
QND measurement, we can straightforwardly calculate the
expected currents and measurement times for the device. If
we choosef lsv0d= f lsv0+dd=1=f rsv0d and f rsv0+dd=0, as
shown in Fig. 2, then the current through the SET is sensitive
to the state of the DWS. In this configuration, the SET island
is conducting when the DWS is in a symmetric state, so a
currenti+ flows, and nonconducting when in an antisymmet-
ric state, soi−=0. Thus the measurement amounts to distin-
guishing the currentsi+ and i−=0 through the SET.

For the symmetric configuration, the rates at which elec-
trons hop on and off the SET island, are given bygl andgr.
Thus the rate of transport of electrons through the SET island
is 1/sgl

−1+gr
−1d. The current is thereforei+=e/ sgl

−1+gr
−1d.

The measurement time is then the time required to distin-
guish two currents,i+ from i−=0 in the presence of shot
noise. Since the transport of electrons through the SET is
Poissonian, the probability of detecting zero electrons tun-
neling in a timet through the SET island, given that a mean

currenti+ is flowing is given byP0sTd=et/sgl
−1+gr

−1d. We there-
fore conclude that the measurement time istmeas<gl

−1+gr
−1,

since the probability of not detecting a tunneling event in(a
few multiples of) this time is small. This agrees with the
measurement determined from the decay rate of off diagonal
elements of the system density matrix, found in Appendix A.

D. Effects of asymmetry

We now turn to the important practical issue of how pre-
cisely the SET island needs to be placed with respect to the
center of the double well potential. Here we assume there is
some asymmetry, which may, for example, arise from fabri-
cation, so thate=Vss+−Þ0. We will estimate the magnitude
of this quantity later, but first we will determine the effect of
the extra terms in the Hamiltonian that arise. Including this

term in V̂ gives

V̂ = n̂s ^ „dn̂+ + esc+
†c− + c−

†c+d…. s14d

This shows that the asymmetry rotates the measurement ba-
sis by an anglef=tan−1se /dd away from the parity eigenba-
sis, that is, the preferred basis for the measurement is
hcossfdu+l+sinsfdu−l ,−sinsfdu+l+cossfdu−lj. We therefore
require thate!d in order that the asymmetry have a negli-
gible effect.

In Appendix B we estimatee andd to be

e < q
2xsxL

ur L − r s
symu3

& q
2xs

ur L − r s
symu2

and

d < qkLuRlS 1

ur s
symu

−
1

ur L − r s
symuD , s15d

where r L is the “center-of-mass” of the left well,r s
=hxs,ys,zsj is the position vector of the SET island and we
choose the origin to be at the midpoint of the DWS. Note
that xs=0 for a symmetrically placedisland, and is assumed
to be small.

The condition thate!d is therefore satisfied ife /d
<2xsur s

symu / ur L−r s
symu2kL uRl!1. This is a tight constraint,

since it requires that the asymmetry, quantified by
2xsur s

symu / ur L−r s
symu2 be much less than the overlap of the

localized wavefunctionskL uRl. With the help of aJ-gate(as
referred to in Kane8) kL uRl may be made as high as 0.03,10

and assuming a typical scale of device ofur L−r su,30 nm,
the elements of the SET and DWS would likely need to be
made with a precision of 1 nm or less, which seems difficult
with current technology.

This issue may not be so significant for electrostatically
defined dots, since the position of the SET island and DWS
may be changed by the variation of surface gate potentials. It
is a serious problem for donor systems with SET’s grown by
metallic deposition, since the location of the donor atoms
and SET island are fixed during fabrication.

E. Mixing time

Asymmetry in the placement of the SET island induces
mixing in the state of the DWS, so there is a mixing time
associated with asymmetry. The calculation of the mixing
time is somewhat lengthy, but not difficult. We derive an
unconditional master equation for the density matrix of the
DWS and SET,R. The solution to the master equation has
exponentially decaying terms, with different time constants.
For the sake of simplicity, here we present the results of the
calculation, and leave the details to Appendix D, which fol-
lows from the results of Appendix C. Takinggi =g, the most
rapidly decaying term gives the measurement time,tmeas
=2/g, which is unchanged from the symmetric case[to
within Ose2d]. The slowest decaying term gives the measure-
ment induced mixing time,tmix=2sd+Dd2/3e2g, so the con-
dition for a good measurement is thattmix@ tmeas, which oc-
curs if d+D@e, in agreement with above. Whene=0, the
measurement is QND,tmix=`.

When eÞ0, the dynamics are divided into two regimes,
t! tmix andt, tmix. In the energy eigenbasis, for short times,
t! tmix, the diagonal elements of the density matrix are al-

FIG. 2. SET island energies relative to the lead Fermi level,
depending on the state of DWS.
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most unaffected while the off-diagonal elements decay at a
rate g /2. This corresponds to the process of projecting the
DWS onto its energy eigenstates. Over longer times,t
, tmix, the diagonal matrix elements decay to their steady-
state values, given by Eq.(D6), corresponding to almost
complete relaxation of the DWS to its ground stateu2l.

F. Summary

Performing a “nonlocal” measurement by projecting onto
the parity eigenbasis of a DWS is in principle possible. A
SET placed in the midplane of the DWS is sensitive to the
local charge at the midpoint of the system, which depends on
the parity of the state.

Estimates of the sensitivity of such a device to asymmetry
in the placement of the SET island suggest that it would need
to be placed with a precision better thankL uRl<3% of the
typical device dimensions. For a donor based system, this is
around 1 nm, which has been demonstrated recently for P+

donors in Si.11

The scheme may still be usefully applied in the case
wheree&d, where the preferred measurement basis is close
to the parity eigenbasis. Applying a bias across the DWS, so
that one well is at a higher potential than the other, would
allow one to rotate the double well energy eigenbasis onto
the measurement eigenbasis.

The precise placement of the SET island in an electrostati-
cally defined system may not present serious problems, since
it may be moved about after fabrication by varying surface
gate voltages. In Sec. V, we give estimates of experimentally
accessible parameter values, and show that this proposal is
experimentally viable.

IV. SINGLET/TRIPLET MEASUREMENT FOR DOUBLY
OCCUPIED DWS

We consider here a DWS populated with two electrons,
shown schematically in Fig. 1. As in the single electron par-
ity measurement scheme, the SET island is placed in the
midplane of the DWS, so that it is sensitive to the charge
distribution on the DWS.

The physical principle that we exploit is the fact that a
pair of electrons in a triplet state are Pauli blocked from
being simultaneously at the origin of the DWS, so the prob-
ability amplitude to find two electrons in a triplet at the ori-
gin is zero. In contrast, this restriction does not apply to a
pair in a singlet state, so there is a nonzero probability am-
plitude to find two electrons in a singlet near the origin. Thus
there is a small variation in the local charge density at the
origin between singlet and triplet states, which can in prin-
ciple be measured to distinguish these subspaces. This has
some similarities to another singlet-triplet measurement
scheme.12

Such systems may be used to implement quantum infor-
mation processing tasks. In certain instances it is important
to distinguish whether the two electrons are in a singlet state
or a triplet state, thereby providing information about their
spin state, e.g., distinguishing a state from the triplet states is
necessary in the three-in-one encoding scheme developed by
DiVincenzoet al.6

A. Derivation of measurement Hamiltonian

In this system, there is one singly occupied singlet state
and three singly occupied triplet states, which are given by

uSl =
1
Î2

sc+↑
† c+↓

† − c−↑
† c−↓

† dul, s16d

uT↑↑l = c+↑
† c−↑

† ul, s17d

uT↓↓l = c+↓
† c−↓

† ul, s18d

uT↑↓l =
1
Î2

sc−↑
† c+↓

† − c+↑
† c−↓

† dul. s19d

The spatial wavefunction of the singlet state is clearly sym-
metric, while the spin wavefunction is antisymmetric. The
converse is true for the triplet states. Written in the parity
eigenbasis, it is clear that there are different charge densities
between the wells depending on the state: the singlet state is
a superposition of terms with nonzero amplitude to find ei-
ther zero electrons(both in theu2l state, with zero charge
density at the midpoint) or two electrons(both in the u1l
state, with nonzero charge density at the midpoint) to exist
between the wells, while the triplet states have an amplitude
to find only a single electron(only one electron in theu1l)
state to be located at the midpoint. There are also two doubly
occupied states given by

uD+l =
1
Î2

sc+↑
† c+↓

† + c−↑
† c−↓

† dul, s20d

uD−l =
1
Î2

sc−↑
† c+↓

† + c+↑
† c−↓

† dul. s21d

As discussed in Sec. II, we need to specify the DWS
dynamics, given byHHub, as well as the interaction between
the DWS and the SET, given byHmeas. In the parity eigen-
basis,HHub is given by

HHub = D/2sn̂+↑ + n̂+↓ − n̂−↑ − n̂−↓d + U/2„sn̂+↑ + n̂−↑dsn̂+↓

+ n̂−↓d + sc+↑
† c−↑ + c−↑

† c+↑dsc+↓
† c−↓ + c−↓

† c+↓d…, s22d

where D=H++−H−− as defined earlier andU=VLLLL is the
double occupation Coulomb energy. The triplet states are
eigenstates of the two-site Hubbard Hamiltonian, so de-
couple from the other states. With respect to the ordered
sub-basishuSl , uD+l , uD−lj the matrix for the Hubbard Hamil-
tonian is

HHub = 3− U D 0

D 0 0

0 0 0
4 . s23d

We now turn to the interaction between the two-electron
system and the nearby SET island populated with, at most,
one electron. There are four distinct terms in Eq.(8) that
need to be computed, fori, j taking the four possible assign-
ments of1 or 2. The triplet states are once again eigenstates
of Hmeas, with eigenvalueVss+++Vss−−. Again with respect to
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the ordered sub-basishuSl , uD+l , uD−lj, the matrix representa-
tion of Hmeasis

Hmeas= 3a d 0

d a 2e

0 2e a
4 , s24d

where a=Vss+++Vss−−, d=Vss++−Vss−− and e=Vss+− as de-
fined earlier. As discussed in Sec. III D, if the physical ar-
rangement of DWS and SET island as shown in Fig. 1 is
symmetric about a line bisecting the double well potential,
thene=0. Asymmetry results ineÞ0.

Finally, we include the internal dynamics of the leads and
of the island, which is assumed to have at most a single
electron, as well as tunneling between the leads and the is-
land. The Hamiltonians for these parts of the complete sys-
tem are given in Eqs.(5)–(7). We now have the ingredients
for the model Hamiltonian of the DWS, SET island and
leads,

HTot = HHub + V̂ + Hisland+ Hleads+ Htun. s25d

B. Measurement of symmetric configuration

In this section, we will assume that the SET is placed
symmetrically with respect to the DWS, soe=0. The triplet
states anduD−l are energy eigenstates of bothHHub and
Hmeas. Similarly, sinced and D are small,kSl is approxi-
mately an eigenstate of bothHHub and Hmeas. The induced
charge on the SET island is different for the triplet states
compared with the singlet, due to their slightly different
charge configurations, so different currents flow through the
SET depending on the subspace the electron pair is in. Thus,
distinguishing distinct currents through the SET yields(ap-
proximately) QND projective measurements onto the singlet
or triplet subspaces. This is analogous to the situation de-
scribed for the single particle in Sec. III for doing QND
measurements in the parity eigenbasis.

The induced shift in the SET island energy depends on the
state of the DWS. We can calculate the SET island energy
shift by imagining the DWS in a given state, then adiabati-

cally turning on the SET-DWS interaction,V̂. Physically, this
corresponds to slowly bringing the occupied SET island
close to the DWS, and observing the change in energy of the
total system during this process. Comparing the adiabatic
energy shift for a DWS in a singlet with the energy shift for
a DWS in a triplet gives the differential shift of the SET
island between the singlet and a triplet states.

A triplet state is an energy eigenstates ofHHub+aHmeas,
where 0øaø1 is the adiabatic parameter controlling the
coupling strength. Therefore the adiabatic variation of the
coupling does not change the eigenstate, just the eigenen-
ergy,

DET↑↑ = kT↑↑usHHub + HmeasduT↑↑l − kT↑↑usHHubduT↑↑l = a.

s26d

For a singlet state, which is almost, but not quite, an
eigenstate ofHHub+aHmeas, we can estimate the induced

shift by calculating the same adiabatic energy shift for the

ground stateuS̃al= uSl−fsad+Dd /UguD+l which is very close
to the singlet. We find

DES< kS̃1usHHub + HmeasduS̃1l − kS̃0uHHubuS̃0l

= a − dsd + 2Dd/U. s27d

Thus, the difference between the SET island energy for
the triplet and singlet state isDE=DET−DES=dsd+2Dd /U,
which corresponds to a differential induced SET island en-
ergy depending on the state of the DWS. It should therefore
be possible to arrange the lead energies so that the SET cur-
rent also depends on the state of the DWS. By tuning the
lead chemical potentials so thatml .ET.mr .ES, current
flows through the SET if the DWS is in the triplet subspace,
but does not for the subspacehuSl , uD+lj. This configuration
is shown later in Fig. 5(a), whereET=v6,7,8 lies in between
the lead Fermi energies, andES=v2 lies below the Fermi
energies. The other levels shown in Fig. 5(a) represent pos-
sible inelastic transitions as lead electrons tunnel onto the
SET island, and are described in more detail in Appendix E
1. In this manner, the two subspaces may be distinguished by
measuring the SET current.

Since the measurement is QND in the triplet subspace, we
use the same arguments as in Sec. III C to estimate the SET
current when the DWS is a triplet. Assuming an electron
tunnel between the leads and the SET island at a rateg, then
for the configuration of lead energies described above, the
current for the triplet state will beiT=eg /2.

The singlet state is approximately an eigenstate ofHHub
and Hmeas, so the same reasoning concludes that the singlet
current should be approximately zero,iS<0. The measure-
ment time for distinguishing these two currents is then
roughly tmeas=2/g, just as in Sec. III C.

As mentioned above, the singlet state is not quite an
eigenstate of the system or measurement Hamiltonians, so
there are corrections to the latter part of this argument. The
dynamics mix the singly occupied stateuSl and the doubly
occupied stateuD+l. Thus there is a small amplitude for the
evolution to induce transitions fromuSl to uD+l. In general
these transitions are strongly inhibited since there is a large
energy gap,U to excite the DWS to the doubly occupied
state. Appendix E 2 shows that in the steady state, the prob-
ability for the DWS to be in a singlet state is very close to
unity, kSurssuSl=kSur0

ss+r1
ssuSl=1−sd+Dd2/U2. This means

that the measurement on the singlet subspace is indeed al-
most QND, since the singlet is not changed greatly during
measurement. Associated with the infrequent fluctuations be-
tween uSl and uD+l is a small current. To estimate an upper
bound on the current,iS that could flow through the SET
when the DWS is in the singlet state, we compute the rate at
which electrons cycle on and off the SET island. In Appendix
E 3 we showiS,2egD2sd+Dd2/U4! iT. This shows thatiS
and iT are very different, and the measurement is indeed
close to QND.

C. Effect of asymmetry

Asymmetry,eÞ0, couples the statesuD+l and uD−l, evi-
dent in the form ofHmeas, in Eq. (24). We find the steady-
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state probability for the DWS to be in a singlet,kSuruSl=1
−sd+Dd2/ s2U2d. We also compute the rate at which elec-
trons cycle on and off the SET island, described in Appen-
dices E 3 and E 4, which leads to an upper bound on the
current given byiS,esgl +grdsd2+D2dsd+Dd2/2U4. Both the
steady-state singlet probability, and the upper bound on the
current for the asymmetric case are similar to the results for
the symmetric case derived in Appendices E 2 and E 3, in-
dicating that the measurement is ratherinsensitiveto SET
asymmetry. For larger values ofe, when 2xsur s

symu / ur L
−r s

symu2* kL uRl, the DWS is driven into the doubly occupied
subspace, which is the basis of an alternative singlet-triplet
measurement scheme.12

D. Summary

In principle the scheme outlined above enables measure-
ment in the singlet-triplet basis. We have shown that it is
possible to measure distinguishable currents through the SET
depending on the state of the DWS. The energy scales for the
singlet-triplet measurement are smaller than those for the
single-particle system, by a factor ofsd+Dd /U, and this re-
quires the lead temperatures to be smaller by a similar factor.
We have also established that asymmetry in the fabrication
of the device is less of a problem for this measurement
scheme than for the single- particle scheme.

V. ESTIMATION OF EXPERIMENTAL PARAMETER
VALUES

We now estimate the required parameters for various ex-
perimentally realizable systems. First we have assumed that
d ,D!U. We also require that the temperature be smaller
than the SET energy shift induced by the DWS. Thus, for the
single-particle case, we require thatkBT!d, and later Fig.
5(a) indicates that for the two-particle system, the tempera-
ture must be smaller than the splitting betweenv2 and v3,
i.e. kBT!dsd+2Dd /U. This is obviously a tight constraint on
the temperature of the system. Furthermore, as discussed in
Sec. V C, we require the line-width of the SET island state
must be smaller than the energy level splittings, i.e.g!d for
the single-particle case andg!dsd+2Dd /U for the two-
particle case. Finally, cotunneling will contribute a back-
ground current due to tunneling via the virtual population of
the SET island.

In order to estimate the various parameters introduced for
this problem, we need to estimate the overlapkL uRl. We
approximate the localized states ass-orbitals bound to each
site, so thatkr uLl=m3/2e−mur−r Lu /Îp, wherem is the inverse
Bohr radius. The integralkL uRl may be performed in prolate
ellipsoidal coordinates14 to give kL uRl=s1+md
+m2d2/3de−md, whered= ur L−r Ru is the separation between
the double well minima.

We can estimateD, the tunneling rate between localized
states, for the case of ans-orbital bound to a donor atom, and
we will use this estimate for the case of electrostatically de-
fined gates as well. Following a similar argument to the deri-

vation of Eq.(B6), we can show thatD<2skRuĤuLl−kL uRl
3kLuĤuLld, where Ĥ= p̂2/ s2med+VLsr d+VRsr d is the time-

independent, single-particle Hamiltonian. AssumingVL,R

=q/ ur L,Ru, we may again evaluate the integralskRuĤuLl and

kLuĤuLl in prolate ellipsoidal coordinates14 to find that the
single-particle tunneling rate is given to reasonable approxi-
mation byD< 2

3qm2 de−dm.
For many materials, e.g. Si or GaAs,q<0.1 eV nm. For a

donor atom system in Si, whereur su<10 nm is a reasonable
estimate for the height of the SET island above the donor
system, andd<30 nm and a Bohr radius ofm−1=3 nm, giv-
ing kL uRl=2310−3, and ignoring the anisotropic effective
mass of Si,15,16we haved<qkL uRl / ur su<20 meV. Similarly
D<15 meV. These figures could be increased to perhaps
200 meV using an externalJ-gate, since the overlap integral
depends exponentially on theJ-gate potential. Finally we
estimateU,10 meV15,16 for donor impurity systems. In an
electrostatically defined system such as GaAs dots, reason-
able estimates for the various parameters areD<150 meV,
d<100 meV andU<1 meV.10,16

For example, supposeU,1 meV andD<d,100 meV,
so D /U,0.1 then for the two-particle case we havekBT
!100 meV, i.e.T!1 K. Therefore, it is conceivable that the
singlet-triplet measurement could be done at 0.3 K in elec-
trostatically defined dots, which is an accessible electronic
temperature. In double donor systems, such as the Kane pro-
posal D<d,100 meV is still reasonable, but sinceU
,10 meV, the relevant temperature is around ten times
smaller, which is probably too small to be practical. This
problem would be resolved if a sufficiently largeJ-gate volt-
age could be applied to increaseD andd. Assuming thatgl
=gr =kBT=30 meV<1011 s−1, then iT<1 nA. The proposals
are likely to work at temperatureskBT,d, D as well, but
with faster mixing times and longer measurement times. The
fundamental requirement for both of the proposals in this
paper is that the overlap between the localized wavefunc-
tions, kL uRl, be as large as possible, and preferably as large
as about 0.1.

Finally, we estimate the effect of cotunneling by compar-
ing the conductance due to resonant tunnelling processes,
Gres, with that due to cotunneling,Gcot. For weak coupling
between the leads and the SET island these quantities are
given by17,18

Gres=
GLGR

GL + GR
andGcot =

p"GLGR

3e2

skBTd2

d2 , s28d

whereGL andGR are the conductances of the left and right
SET-lead tunnel barrier. For the sake of estimation, we as-
sume that these are equal toGL=GR=je2/" with j!1 for
weak coupling. The additional current due to cotunneling is
small as long asGcot!Gres, i.e. whenkBT!d /Îj, which is a
less stringent constraint than above. Therefore, as long as the
previously discussed conditions are met, cotunneling is
small.

VI. CONCLUSION

In this paper, we have presented and analyzed a proposal
for performing measurements in nonlocalized bases of both
singly- and doubly-occupied double wells.
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The physical mechanism by which the measurements op-
erate is to detect the small variation in electronic charge den-
sity near the midpoint of the DWS. Based on reasonable
estimates for the system parameters the small difference in
the Coulomb potential atan SET island due to the different
charge distributions of different states of the DWS is in prin-
ciple detectable. The detected signal is the current through
the SET island.

The main difficulties in these schemes is the precision
with which the SET island must be placed at the mid-plane
of the DWS and the required operating temperatures. For the
single-particle parity measurement, a misplaced SET island
produces a measurement in the localized basis, which has
been discussed in the past.19

The two-particle singlet-triplet measurement scheme is
less sensitive to asymmetry in the placement of the SET, but
requires very low temperatures to work effectively.

The required tolerance to such misplacement is at the
edge of current fabrication technology of 1 nm for doped Si,
and 30 nm for GaAs dots, which may be achievable in light
of recent experiments.11,22 Other constraints such as the op-
erating temperature and tunneling rates are experimentally
achievable.
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Fujitsu for financial support. S.D.B. acknowledges support
from the E.U. NANOMAGIQC project(Contract No. IST-
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APPENDIX A: MASTER EQUATION FOR SYMMETRIC
SINGLE PARTICLE SYSTEM

The Hamiltonian for the complete system of double well,
SET and leads is given by

Htot = HHub + V̂ + Hisland+ Hleads+ Htun. sA1d

Following the derivation of Wisemanet al.,19 we can
write down a master equation for the reduced density matrix,
R, for the system consisting of the double well plus the SET
island. The dissipative terms are formally the same, where
we identify c+ and cs, respectively, withc1 and b in their
notation. The result is

Ṙstd = − ifHHub + Hisland,Rstdg + hgl„1 − f lsv0d… + gr„1

− f rsv0d…jDfs1 − n̂+dcsgRstd + hgl f lsv0d

+ gr f rsv0djDfs1 − n̂+dcs
†gRstd + hgl8„1 − f lsv0 + dd…

+ gr8„1 − f rsv0 + dd…jDfn̂+csgRstd + hgl8f lsv0 + dd

+ gr8f rsv0 + ddjDfn̂+cs
†gRstd, sA2d

where f lsrd is the Fermi distribution for leadlsrd, DfAgB
;JfAgB−AfAgB;ABA†− 1

2sA†AB+BA†Ad and gi

=pgiuTik0
u2 and gi8=pg1uTik08

u2, where gi is the density of
states in leadi, k0=Î2mv0/" andk08=Î2msv0+xd /".

We takef lsv0d= f lsv0+dd=1=f rsv0d and f rsv0+dd=0, as
shown in Fig. 2, and then Eq.(A2) becomes

Ṙstd = − ifHHub + Hisland,Rstdg + sgl + grdDfn̂−
†cs

†gRstd

+ gr8Dfn̂+csgRstd + gl8Dfn̂+
†cs

†gRstd. sA3d

We will assume that the SET island is classical, in the
sense that its reduced density matrix has no off-diagonal
terms. This is justified since the conservation of the electron
number between the leads and the island means that the elec-
tron number on the island is entangled with the electron
number in the leads, and the lead degrees of freedom aver-
aged over. Therefore we write the double well plus SET
island system in the separable form

R= r0 ^ u0lk0u + r1 ^ u1lk1u, sA4d

wherer0s1d is the state of the DWS with 0(1) electrons on the
SET island. The reduced density matrix for the DWS alone is
given byr=TrsfRg=r0+r1.

We now turn the master equation into a pair of coupled
equations forr0 and r1 by computing the matrix elements

k0uṘstdu0l and k1uṘstdu1l using Eq.(11):

ṙ0std = − ifHHub,r0stdg − sgl + grdAfn̂−gr0std + gr8Jfn̂+gr1std

− gl8Afn̂+gr0std, sA5d

ṙ1std = − ifHHub,r1stdg + sgl + grdJfn̂−gr0std − gr8Afn̂+gr1std

+ gl8Jfn̂+gr0std. sA6d

Since all the system operators in these equations are number
operators, the equations are straightforward to solve. We note
that r0,1=a±n̂± are fixed points of the equations, for some
coefficientsa± determined by the rate balance.

Takinggi =g, and with respect to the basis{u1l, u2l}, the
solution to these unconditional equations is

r0std = 31 + e−2gt

2
r0

++s0d +
1 − e−2gt

2
r1

++s0d e−3gt/2r0
+−s0d

e−3gt/2r0
−+s0d e−2gtr0

−−s0d
4 ,

sA7d

r1std = 31 − e−2gt

2
r0

++s0d +
1 + e−2gt

2
r1

++s0d e−gt/2r1
+−s0d

e−gt/2r1
−+s0d s1 − e−2gtdr0

−−s0d + r1
−−s0d

4 , sA8d
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whererpq=kpuruql. It is evident that the diagonal elements of
the reduced density matrix for the DWS,r=r0+r1, are con-
stant as required for a QND measurement, while the off-
diagonal elements decay with two characteristic time scales,
the longest of which is 2/g, consistent with the measurement
time computed assuming Poissonian tunneling statistics in
Sec. III C.

APPENDIX B: APPROXIMATE EXPRESSIONS FOR e
AND d

We now estimatee using Eq.(3). For the purposes of this
estimate, we will assume that the SET island wavefunction is
a delta function located atr s=hxs,ys,zsj (xs is the axial posi-
tion of the island, andxs=0 for a symmetric arrangement) as
shown in Fig. 3, i.e.ufssr du2=dsr −r sd, so

e = UVss+−U = qE d3r
f+

* sr df−sr d
ur − r su

=K+ U 1

ur − r su
U −L

= qSKLU 1

ur − r su
ULL −KRU 1

ur − r su
URL

+KRU 1

ur − r su
ULL −KLU 1

ur − r su
URLD , sB1d

where kr uLl=fLsr d=fsr −r Ld, fsr d is the localized wave-
function of a single site andr L is the “center-of-mass” of the
left well. The last two terms cancel for allxs, and if xs=0
then the first two terms cancel also, hence our previously
stated result thate=0 for a symmetric configuration. Forxs
Þ0 we have

KLU 1

ur − r su
ULL =E d3r

ufsr − r Ldu2

ur − r su

=E dx dy dz
ufshx − xL,y,zjdu2

Îsx − xsd2 + sy − ysd2 + sz− zsd2
.

sB2d

We assume the asymmetry is small so thatxs is a small
quantity, and we expand the square-root in a power series
aboutxs=0 to find

KLU 1

ur − r su
ULL =KLU 1

ur − r s
symu
ULL + xsh + Osxs

2d,

sB3d

where r s
sym is the intended, symmetric location of the SET

island andh=ed3r fufsr −r Ldu2x/ ur −r s
symu3g. Following the

same reasoning, we can show that

kRl 1

ur − r su
R=KRU 1

ur − r s
symu
URL − xsh. sB4d

We can estimateh by assuming that the localized wavefunc-
tion is very tightly bound, so thatufsr du2=dsr d, and thenh
=xL / ur L−r s

symu3. Since kRu1/usr −r s
symduuRl=kLu1/usr

−r s
symduuLl, we find that

e < q
2xsxL

ur L − r s
symu3

& q
2xs

ur L − r s
symu2

. sB5d

Estimating d is more difficult, and without detailed
knowledge of the localized wavefunctionfsr d our estimate
of it is somewhat less controlled than that ofe. For a sym-
metric system we have

d = Vss++ − Vss−−

= k+ uV̂u + l − k− uV̂u − l

=
1

2 + 2kLuRl
skLu + kRudV̂suLl + uRld

−
1

2 − 2kLuRl
skLu − kRudV̂suLl − uRld

= 2kRuV̂uLl − 2kLuRlkLuV̂uLl + OskLuRl2d. sB6d

Using the approximation thatf is tightly bound allows us to

approximatekLuV̂uLl<q/ ur L−r s
symu. We can estimate an up-

per bound onkRuV̂uLl by considering thatfL
* sr dfRsr d is

peaked with a maximum at the midpoint of the double well.
Thus, the potential at the island due to the charge distribution
fL

* sr dfRsr d will be less than the potential due to the entire
weight of this product located at the midpoint. That is

kRuV̂uLl&qkL uRl / ur s
symu. Therefore an estimate for the mag-

nitude ofd is

d < qkLuRlS 1

ur s
symu

−
1

ur L − r s
symuD . sB7d

APPENDIX C: DERIVATION OF MASTER EQUATION
FOR NONCOMMUTING SYSTEM AND

MEASUREMENT HAMILTONIANS

In this appendix we derive a master equation for a device
whose system Hamiltonian,Hsys, does not commute with the
measurement Hamiltonian,Hmeas. The results from this ap-
pendix are used in Appendices D and E, whereinHsys
=HHub. The total Hamiltonian for the device is taken to be

HTot = Hsys+ V̂ + Hisland+ Hleads+ Htun, sC1d

whereV̂= n̂s^ HmeasandHisland=v0n̂s, Hleads=okvksn̂lk+ n̂rkd
andHtun=okTlkclk

† cs+Trkcrk
† cs+H.c., as given in Sec. II.

The general method for this derivation follows several
steps.

(1) We move to an interaction picture to transform away
all the free dynamics.

(2) Using the Zassenhaus relation we factor the interac-
tion Hamiltonian into a product of lead operators and a

FIG. 3. Geometry of an asymmetric system.
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finite-dimensional operator acting on the DWS and SET.
(3) By tracing over the lead modes, we derive a Markov-

ian master equation for the DWS and SET density matrix,R.
In this master equation, the Fourier components ofBkstd ap-
pear in the Lindblad terms.

We transform to an interaction picture with respect to the

Hamiltonian H0=Hsys+V̂+Hisland+Hleads, so that HTot=H0
+Htun, and the interaction picture Hamiltonian isHIstd
=eiH0tHTote

−iH0t−H0=eiH0tHtune
−iH0t. In order to computeHI

we first note thatHleads and Hisland commute with all other

terms in H0 so eiH0t=eisHsys+V̂dteiH islandteiH leadst. Using the op-
erator identities

exn̂c = c andcexn̂ = exc, sC2d

wheren̂=c†c and fx,cg=0, we find that

HIstd = o
k

sTlkclk
† + Trkcrk

† deisvk−v0dteisHsys+V̂dtcse
−isHsys+V̂dt + H.c.

sC3d

Since fHsys,V̂g= n̂s^ fHsys,HmeasgÞ0 the operator exponen-
tials appearing above cannot be factorized. However we may
simplify the expression using the Zassenhaus operator
relation,20 which is an inverse relation to the Baker-
Campbell-Hausdorff formula, and it states thateA+B

=eAeBP j↑eCjfA,Bg where eachCjfA,Bg=s−1d jCjfB,Ag is a
sum of nested commutators, each term of which hasA andB
appearing at least once(e.g. C1fA,Bg=−1

2fA,Bg and
C2fA,Bg=−1

6s[A,fA,Bg] − [B,fB,Ag]d. The↑ in the index of
the product indicates that the product is ordered in increasing
order of j , since the factors in the product do not commute.
For our purposes, the detailed form ofCj is not important.

Taking A= iHsyst and B= iV̂t= in̂sHmeast, and noting that
n̂s

2= n̂s so that CjfiHsyst , in̂sHmeastg=sitd j+1n̂sCjfHsys,Hmeasg
we have

eisHsys+V̂dtcse
−isHsys+V̂dt

= eiHsystein̂sHmeastp
j↑

esitd j+1n̂sCjfHsys,Hmeasgcs

3p
j↓

e−sitd j+1n̂sCjfHsys,Hmeasge−in̂sHmeaste−iHsyst,

=eiHsystp
j↓

e−sitd j+1CjfHsys,Hmeasge−iHmeaste−iHsystcs,

=eiHsyste−isHsys+Hmeasdtcs, sC4d

where the first equality follows from direct substitution into
the Zassenhaus relation, the second equality follows from
repeated applications of Eqs.(C2), and the final equality fol-
lows by inverting the Zassenhaus relation. We may therefore
write the interaction Hamiltonian as

HIstd = o
k

sTlkclk
† + Trkcrk

† deisvk−v0dteiHsyste−isHsys+Hmeasdtcs + H.c.

;o
k

sTlkclk
† + Trkcrk

† dBkstdcs + H.c., sC5d

where

Bkstd = eisvk−v0dteiHsyste−isHsys+Hmeasdt sC6d

is an operator acting on the DWS alone.
The state matrixW of the entire closed system including

the double well, SET island and leads evolves according to
the Schrödinger equation in the interaction picture, taken to
second order,19

Wst + Dtd = Wstd − iDtfHIstd,Wstdg

− DtE
t

t+Dt

dt8[HIstd,fHIst8d,Wst8dg] . sC7d

Making the first Markov approximation, we assume that the
system may at any time be written asWstd=RIstd ^ rl ^ rr, so
that each lead is always in a thermal state. Then averaging
over lead degrees of freedomk·ll,r, and noting thatkclsrdkl
=kclsrdk

† l=0, kclsrdkcrsldk8l=kclsrdk
† crsldk8l=kclsrdk

† crsldk8
† l=0 and

kclsrdk
† clsrdk8l=dsk−k8df lsrdsvkd, where f lsrd is the Fermi distri-

bution for leadlsrd anddsxd is the Dirac-delta function. Then
the SET island plus DWS interaction picture density matrix,
RIstd, satisfies

ṘIstd = −E dvk„gluTlku2f lsvkd + gruTrku2f rsvkd…

3 E
−`

t

dt8hBkstdBk
†st8dcscs

†RIst8d

− Bk
†stdcs

†RIst8dcsBkst8d − Bk
†st8dcs

†RIst8dcsBkstd

+ RIst8dcscs
†Bkst8dBk

†stdj −E dvksgluTlku2„1 − f lsvkd…

+ gruTrku2„1 − f rsvkd…d 3 E
−`

t

dt8hBk
†stdBkst8dcs

†csRIst8d

− BkstdcsRIst8dcs
†Bk

†st8d − Bkst8dcsRIst8dcs
†Bk

†std

+ RIst8dcs
†csBk

†st8dBkstdj, sC8d

wheregi is the density of states for leadi. We further assume
that the dynamics of the system is slow compared to tunnel-
ing rates, etc. so that we may make the replacementRIst8d
→RIstd in the above integrals, making Eq.(C8) local in time.
Equation(C8) no longer depends on the lead degrees of free-
dom, and so is an equation for a finite-dimensional system.
With the aid of some further approximations, we may per-
form the integrations overvk and t8, which we now do.

In order to do the integrals, we note that each term in Eq.
(C8) is finite dimensional so has a finite-dimensional matrix
representation. Further, we may writeBkstd as a discrete Fou-
rier decomposition,

Bkstd = o
m=1

N

eisvk−vmdtPm, sC9d

for some finiteN and operatorsPm. From Eq.(C6), the ex-
plicit form of Pm depends on the explicit form ofHsys and is
important for the discussion of the dynamics of the system.
The operatorsPm for the single-particle DWS are given in
Eq. (D4). For the two-electron DWS, they are given in Eq.
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(E1) and Eq.(E7) for symmetric and asymmetric cases, re-
spectively. We now perform the integrations for one of the
terms in Eq.(C8) as an example, to show explicitly the ap-
proximations we make. For instance the second term of Eq.
(C8) is

E dvk gluTlku2f lsvkdE
−`

t

dt8 Bk
†stdcs

†RIstdcsBkst8d

= o
mn
E dvk gluTlku2f lsvkd

3E
−`

t

dt8eisvk−vmdte−isvk−vndt8Pm
† cs

†RIstdcsPn,

=o
mn
E dvk gluTlku2f lsvkddsvk − vnd

3eisvn−vmdtPm
† cs

†RIstdcsPn,

<o
m

gl f lsvmdPm
† cs

†RIstdcsPm, sC10d

where gl is defined in Appendix A. from substituting the
Fourier decomposition ofBkstd, the second equality follows
from evaluating the integral overt8, and to make the final
(approximate) equality we have made a rotating-wave ap-
proximation, where we takeeisvn−vmdt=dm,n. This is reason-
able if the frequency differencevn−vm (for nÞm) is suffi-
ciently large, since when we come to solve the resulting
differential equation terms containing a factoreisvn−vmdt will
be rotating rapidly, and so average to zero, to a good ap-
proximation. This approximation is reasonable whenglsrd is
much smaller than the smallest energy level separations,
glsrd!vn−vm, for nÞm.

Applying these arguments to the other terms in Eq.(C8)
results in the master equation forRIstd

ṘIstd = o
m

„gl f lsvmd + gr f rsvmd…DfPm
† cs

†gRIstd

+ sgl„1 − f lsvmd… + gr„1 − f rsvmd…dDfPmcsgRIstd,

sC11d

where againDfAgB;ABA†− 1
2sA†AB+BA†Ad. This forms a

generalization of the results of Wisemanet al.19 to the situ-
ation where the measurement Hamiltonian(HCB in their no-
tation) does not commute with the free Hamiltonian of the
system(H0 in their notation). Equation(C11) shows the im-
portance of the Fourier decomposition of the system operator
Bkstd—the Fourier components ofBkstd, and their adjoint,
form the Lindblad operators in the master equation, and it is
through these components that the DWS interacts with the
SET island.

Returning to the Schrödinger picture, the master equation
is given by

Ṙstd = − ifH0,Rg + o
m

h„gl f lsvmd + gr f rsvmd…DfPm
† cs

†gRstd

+ sgl„1 − f lsvmd… + gr„1 − f rsvmd…dDfPmcsgRstdj,

sC12d

APPENDIX D: MASTER EQUATION FOR ASYMMETRIC
SINGLE-PARTICLE SYSTEM

We now derive a master equation for the single-particle
DWS for the case that the SET island is not placed sym-
metrically. Equation(14) gives the Hamiltonian for the Cou-
lomb interaction between the SET island and DWS as

V̂ = n̂s ^ „dn̂+ + esc+
†c− + c−

†c+d… ; n̂s ^ Hmeas. sD1d

When eÞ0, fHmeas,HHubgÞ0, so we use the derivation of
the master equation in Appendix C.

First, from Eq.(C6),

Bkstd = eisvk−v0dteiHHubte−isHHub+Hmeasdt, sD2d

= o
m=1

4

eisvk−vmdtPm, sD3d

=eivktse−iv0tñ− + e−isv0+d+Ddts̃−

+ e−isv0+ddtñ+ + e−isv0−Ddts̃+d, sD4d

where s̃+=−s̃−
†=f−e / sd+Ddgu+lk−u and ñ±= n̂±−s̃±. Thus,

the Fourier components,Pm, of Bkstd are the operators ap-
pearing in Eq.(D4) associated with the four Fourier frequen-
cies vmP hv0,v0+d+D ,v0+d ,v0−Dj. Here we have ne-
glected terms ofOse2d or higher, since these are negligible.

The master equation for the SET and DWS is then

Ṙstd = − ifHHub + Hisland,Rstdg + sgl + grdDfñ−cs
†gRstd

+ gr8Dfñ+csgRstd + gl8Dfñ+
†cs

†gRstd + sgl

+ grdDfs̃+
†cs

†gRstd + gr8Dfs̃−csgRstd + gl8Dfs̃−
†cs

†gRstd.

sD5d

This expression agrees with Eq.(11) in the limit thate→0.
We again assume the SET island does not maintain coher-
ence, as expressed in Eq.(A4), and we then can solve Eq.
(D5) for r0std andr1std.

The most important quantity to derive from this master
equation is the mixing time. By taking the Laplace transform
of Eq. (D5), we find poles at 0, −3ge2/2sd+Dd2, −g /2,
−3g /2 and −2g. All but the second of these poles appear as
rates in the solution for the symmetric case, Eq.(A8). The
second pole is very small, and corresponds to the mixing rate
induced by the asymmetry in the SET island placement. For
times t! tmix=2sd+Dd2/3ge2, the solution to the master
equation is essentially the same as Eq.(A8). On a time-scale
t, tmix, the diagonal elements also decay, so that the steady-
state solution in the ordered basis{u1l, u2l} is
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r0 = 3
e4

2sd + Dd4 0

0
e4

2sd + Dd4
4 and

r1 = 3
e2

sd + Dd2 −
e

sd + Dd

−
e

sd + Dd
1 −

e2

sd + Dd2
4 , sD6d

where we have kept only the highest order term ine for each
matrix element. This steady-state solution corresponds to the
DWS being(almost) in its ground state,u2l, with the SET in
the closed state, occupied by a single electron.

APPENDIX E: MASTER EQUATION FOR A DOUBLY
OCCUPIED DWS

In this Appendix we derive a master equation for the dy-
namics of the singlet-triplet measurement scheme. Initially
we consider a symmetrically placed SET island. We first de-
rive the Lindblad operators that appear in the master equa-
tion, and give a physical interpretation to the discrete spec-
trum, hvmj, that appears in their derivation. We then give a
quantum trajector’s analysis of the measured currents in the
triplet subspaces and singlet subspaces. Next we compute the

degree of mixing in the singlet subspace induced by the fact
that the singlet is not an eigenstate of the dynamics. Finally,
we provide a derivation of the jump operators for an asym-
metrically place SET.

1. Lindblad operators

The device Hamiltonian is given by Eq.(25) so we can
use the results of Appendix C to derive a master equation for
the dynamics of the DWS and SET island coupled to the
leads. The crucial quantity to evaluate isBkstd, whose defi-
nition is given in Eq.(C6). Then identifying the Fourier com-
ponents,Pm of Bkstd, as in Eq.(C9), provides the operators
that appear in the Lindblad terms of the master equation, Eq.
(C11).

We assume thatU and a are relatively large energies,
while e, d and D are relatively small. In fact, for the sym-
metric case,e=0, and we will investigate this “ideal” situa-
tion first. Clearly, if e=0, then the dynamics is even more

restricted, so that the measurement Hamiltonian,V̂= n̂s
^ Hmeas, only couples the spatially symmetric statesuSl and
uD+l, [see Eq.(24)], so we may restrict our analysis to the
2-dimensional subspace spanned by the ordered basis
huSl , uD+lj. In this restricted basis we may decomposeBkstd
into four Fourier components:

Bk
hS,D+jstd = eivkt1eiUt3 0 0

−
d

U
04 + eifsd2+2dDdUgt3 1 −

d + D

U

−
D

U
0 4 + e−ifsd2+2dDdUgt3 0

D

U

d + D

U
1 4 + e−iUt30

d

U

0 0
42 , sE1d

where for simplicity(and without loss of generality) we have
seta=−v0 so that a common overall factor ofeisa+v0dt con-
veniently vanishes. Also, we have discarded terms of order
d2, dD and D2 appearing in the matrices, since these are
small, but they are retained in exponents where they are the
lowest order terms that lift the degeneracy of thevm. We will
refer to the operators appearing in Eq.(E1) asP1, P2, P4, and
P5, respectively. For completeness,

Bkstd = Bk
hS,D+jstd + eivktsP3 + P6 + P7 + P8d, sE2d

where P3= uD−lkD−u, P6= uT↑↑lkT↑↑u, P7= uT↑↓lkT↑↓u and P8

= uT↓↓lkT↓↓u. This decomposition ofBkstd shows that there are
eight Lindblad operators,P1, . . . ,P8.

The frequenciesvm, associated with the measurement
process, are given byv3,6,7,8=0, v4=−v2=sd2+2dDd /U and
v5=−v1=U (where, again, we have seta=−v0; otherwise
we have an overall offset ofa+v0 to our energy scale).
These energies are shown relative to the lead chemical po-
tentials,ml andmr, later in Fig. 5(a). This choice determines

the coefficients of the Fermi factors in the master equation,
Eq. (C11).

We interpret the energies"vm as the change in energy of
electrons tunneling between the SET island and a lead. Thus,
sincev3,6,7,8=0, the corresponding processes,P3,6,7,8are as-
sociated with elastic tunneling between the lead and the SET.
This can only induce dephasing of the DWS, since no energy
is exchanged between the leads and the DWS. These elastic
processes therefore do not induce mixing in the DWS, and
are the origin of the QND projective nature of the measure-
ment in the triplet subspace.

Conversely,v1,2,0, soP1,2 correspond to inelastic lead-
SET tunneling processes whichgain an energy"v1,2. This
additional energy in the lead is provided by the electron-pair
in the DWS which losesenergy. Similarly, processesP4,5
correspond to lead electrons losing energy as the DWS be-
comes excited. We therefore expect that there will be some
measurement-induced energy relaxation associated with the
measurement of a singlet state.

PARITY MEASUREMENT OF ONE- AND TWO-ELECTRON… PHYSICAL REVIEW B 70, 205342(2004)

205342-11



We note in passing that these elastic and inelastic pro-
cesses in the detector have counterparts in the measurement
of a DWS by a point contact detector, as described in
Ref. 13.

2. Master equation in singlet subspace

The singlet and triplet subspaces are not mixed at all by
the dynamics, so we derive a master equation for the state of
the DWS and SET in the singlet subspace,R=r0 ^ u0lk0u
+r1 ^ u1lk1u, using the results of Appendix C. In particular,
thePm that appear in Eq.(E1) form the Lindblad operators in
Eq. (C11) and thevm appear as arguments to the Fermi func-
tions in Eq.(C11),

ṙ0 = − ifHHub,r0g + g8sJfP4gr1 + JfP5gr1 − AfP1
†gr0

− AfP2
†gr0d,

ṙ1 = − ifHHub + Hmeas,r1g − g8sAfP4gr1 + AfP5gr1

− JfP1
†gr0 − JfP2

†gr0d, sE3d

whereg8=gl +gr, and we have usedDfBgr=JfBgr−AfBgr.
The steady-state probability for the system to be in the sin-
glet state is given by kSurssuSl=kSur0

ss+r1
ssuSl=1−sd

+Dd2/U2, is very close to unity. Therefore, if the DWS starts
in a singlet state, its state does not change significantly dur-
ing the measurement. This further justifies the assertion that
the measurement is nearly QND on the singlet subspace.

The poles of the master equation determine the measure-
ment and relaxation rates. There are poles at 0,−g8d2/U2,
−g8 /2 and −g8. The second of these corresponds to energy
exchange processes generated by the operatorsP1 and P5
appearing in the Lindblad terms. There is therefore a
measurement-induced mixing time,tmix=U2/g8d2. This mix-
ing time is due to the fact that the singlet state is not quite an
eigenstate of eitherHmeasnor HHub. The mixing time is very
long compared to the measurement time,,1/g8, since d
!U. The mixing only induces relaxation of the DWS, and so
it has very little effect on the singlet state, which is already
very close to the ground state. We therefore conclude that
this intrinsic mixing is negligible.

3. SET average currents

To analyze the evolution of the measurement more for-
mally, we unravel the unconditional master equation, Eq.
(C12), and derive the conditional dynamics of quantum tra-
jectories. From the unraveling we can provide estimates for
SET currents. We assume the system may be described by
the density matrix given in Eq.(12), i.e., the SET island does
not support coherent superpositions of 0 and 1 electrons. We
may therefore reduce the master equation given in Eq.(C12)
to a pair of master equations forr0 andr1.

The dynamics of the system decouple, depending on the
state of the DWS. In particular, the triplet states anduD−l are

eigenstates of the evolution operators, so we may consider
the dynamics separately in each of the uncoupled, 1D sub-
spaceshuT↑↑lj ,huT↓↓lj ,huT↑↓lj ,huD−lj. In these subspaces the
Hubbard Hamiltonian is proportional to the identity so the
reduced master equations for each subspace are of the form

ṙ0 = grJfPgr1 − glAfPgr0, sE4d

ṙ1 = glJfPgr0 − grAfPgr1, sE5d

whereP is the projector onto the subspace, e.g. for the sub-
spacehuD−lj, P= uD−lkD−u.

These reduced master equations depend on only a single
jump operatorP, so the evolution between jumps may be
written as a pure state,ucns

stdlc, ns=0 or 1, governed by the
non-Hermitian effective Hamiltonian,Hns

according to the
Schrödinger equation21

d

dt
ucns

stdlc = − iHns
ucns

stdlc. sE6d

The non-Hermitian Hamiltonians for each subspace areH0
=−isgl /2dP and H1=−isgr /2dP. The solution is simply
uc0stdlc=e−sgl/2dtuc0s0dl and uc1stdlc=e−sgr/2dtuc1s0dl. The
jump rate is determined by the cumulative density function
(CDF) for the waiting time between jumpsPns

stJ, td=1
−ckcns

std ucns
stdlc so P0stJ, td=1−e−glt and P1stJ, td=1

−e−grt. Thus we have a cycle of electrons hopping onto the
SET from the left lead at a rategl then hopping off to the
right lead at a rategr. We therefore expect a currentiT
=esgl

−1+gr
−1d−1 to flow through the SET when the DWS is in

the triplet subspace, in agreement with above.
We now turn to the more complicated dynamics in the

singlet subspace,huSl , uD+lj. To simplify the analysis of this
system, we will ignore the Lindblad terms depending onP1
and P5 in the master equation, Eq.(E3). This is reasonable
since these terms areOsd2/U2d, which is small. For the re-
sulting approximate form of Eq.(E3) the dynamics between
jumps are governed by effective Hamiltonians for each
SET island state,ns=0,1, with a single jump operator,
H0=HHub− isg8 /2dP2P2

† andH1=HHub+Hmeas− isg8 /2dP4
†P4.

Since there is only a single jump operator associated with
Hns

, we unravel the master equations as non-Hermitian
Schrödinger equations for the pure, conditional, unnormal-

ized, between-jump state-vectors,uc̃ns
stdlc=Uns

stducns
s0dl,

whereUns
std=e−iHns

t.21 During a jump at timetJ, the state of

the system evolves discontinuously according touc̃1stJ
+dl

=P2
†uc0stJ

−dl and uc̃0stJ
+dl=P4uc1stJ

−dl.
To derive an upper bound oniS, we calculate the rate at

which electrons hop on and off the SET, given that the DWS
begins in a singlet state. The jump rate is determined by the
CDF for the lifetime of the SET state withns=0 or 1 elec-
trons,Pns

stJ, td=1−ckcns
std ucns

stdlc. This quantity depends
on the state of the DWS immediately after the most recent

jump, uc̃ns
stJ

+dl, which is not deterministic due to the stochas-
tic nature of the trajectory. However, as discussed in Appen-
dix E 2, the steady state of the DWS,rss, is very close to the
singlet state sincekSurssl=1−sd+Dd2/U2.21 Therefore, for
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the purposes of computing the CDF, to very good approxi-

mation, we can make the replacementuc̃ns
stJ

+dl→ uSl. The
unnormalized, conditional state of the DWS between jumps
is then

uc̃0stdlc = U0uSl < esiU−g8/2dtuSl + OsD/Ud,

uc̃1stdlc = U1uSl < esiU−g8D2sd + Dd2/2U4dtuSl + O„sd + Dd/U…,

wheret is measured from the previous jump. It follows that
the CDFs for the jump times areP0stJ, td<1−e−g8t and

P1stJ, td<1−e−sD2sd +Dd2/U4g8t. These CDFs show that the
lifetime of an empty SET is short,t0=1/g8, while the life-
time of an occupied SET is very long,t1=U4/D2sd+Dd2g8.
Thus the cycle time for electrons to hop on and off the island
is approximatelyt1, and this provides an upper bound on the
SET current when the DWS starts in the singlet state,
iS,e/t1. This is much less thaniT, in agreement with the
heuristic prediction thatiS=0.

To confirm these approximate analytical predictions, we
have performed numerical simulations of the conditional dy-
namics derived from the master equation, Eq.(E3), which is
not subject to any of the approximations made in this section.
In Fig. 4(a) we show the projectionukSucstjdlu immediately
after jump j for a sample of 200 jumps, assuming parameter
valuesd=D /2=10g8=U /10. In this figure it is evident that
the DWS typically remains close to the singlet state after
every jump, in agreement with the preceding analysis.

Furthermore, we plot the distribution of waiting times be-
tween jumps for a simulation of 10000 sequential jumps,
shown in Fig. 4(b) for an empty islandsns=0d and in Fig.
4(c) for an occupied islandsns=1d. For the parameters cho-
sen, the figures show that the SET remains empty for a char-
acteristic time of around 100/U, while the typical occupation
time is around 28000/U. These times are in agreement with
the analytic estimates given above for which
t0=100/U andt1=28000/U.

This analysis establishes that since the DWS remains
close to the singlet state at all times, the measurement is
close to an ideal QND measurement.

4. Bk„t… for asymmetric DWS

We now consider the effect of asymmetry in the place-
ment of the SET island, whereeÞ0. As in Appendix C we
expressBkstd in a Fourier decomposition restricted to the
ordered basishuSl , uD+l , uD−lj, which spans thesinglet sub-
space. The Fourier components of this operator are crucial
for deriving the master equation with which to analyze the
system. We find

FIG. 4. (a) Projection of the state of the DWS onto the singlet
state, ukSucstjdlu, immediately after jump j for d=D /2=10g8
=U /10. (b) Histogram of waiting times between jumps withns=0
and (c) with ns=1, for a simulation with 104 jumps.

FIG. 5. (a) Transition energies,vm, relative to lead Fermi levels,
for a symmetrically placed SET island, wherev1=−v5=−U, v2

=−v4=−sd2+2dDd /U and v3,6,7,8=0, and (b) for an asymmetri-
cally placed SET island, wherev1=−v5=−U, v2=−sd2+2dDd /U,
v3=−v4=−2e andv6,7,8=0.
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Bkstd = eivkt1eiUt3
0 0 0

−
d

U
0 0

0 0 0
4 + eifsd2+2dDd/Ugt3 1 −

d + D

U
0

−
D

U
0 0

0 0 0
4 + ei2et3

0
D

2U
−

D

2U

d + D

2U

1

2
−

1

2

−
d + D

2U
−

1

2

1

2

4
+ e−i2et3

0
D

2U

D

2U

d + D

2U

1

2

1

2

d + D

2U

1

2

1

2

4 + e−iUt30
d

U
0

0 0 0

0 0 0
42 . sE7d

To derive this result, we have assumed thatsd+Dd2/4U!e!U. In the opposite limit,sd+Dd2/4U@e, the effect of asymmetry
is negligible. The energiesvm appearing in the exponents above are shown schematically in Fig. 5(b). As described in
Appendix E 1, these energies correspond to the change in energy of an electron as it tunnels between alead and the SET,
gaining or losing energy as it interacts with the DWS.
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