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We outline a scheme to accomplish measurements of a solid state double well €%#Snwith both one
and two electrons in nonlocalized bases. We show that, for a single particle, measuring the local charge
distribution at the midpoint of a DWS using a SET as a sensitive electrometer amounts to performing a
projective measurement in the paritgyymmetric/antisymmetrjceigenbasis. For two-electrons in a DWS, a
similar configuration of SET results in close-to-projective measurement in the singlet/triplet basis. We analyze
the sensitivity of the scheme to asymmetry in the SET position for some experimentally relevant parameter,
and show that it is experimentally realizable.
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I. INTRODUCTION Il. SYSTEM

In this paper, we present a scheme for performing mea- \ye consider the device pictured in Fig. 1, consisting of a

surements of one- and two-electron double well systemggT placed in the mid-plane of the DWS, in order to be
(DWSs in nonlocal bases. The principle idea behind botheenitive to the charge at the midpoint. This charge differs

schemes is to detect the small charge differences at the migl v een symmetric and antisymmetric spatial wavefunc-

point of the DWS for different electronic states using a singlejqns and we analyze a scheme to measure this difference in
electron transisto(SET) as a sen5|t|ve eleqtrometer. SET's order to effect projective measurements onto the parity
have been demonstrated to be highly sensitive electrometeréigenspaces_

with sensitivities of a fewue/ V’_I—Tz.l—3 We therefore expect For the purposes of this paper, we assume the SET island
that they could detect fluctuations of around 1% of an elec g oniy a single accessible energy level, which is reasonable
tron charge in around 10-100 ns. . if the island is small and the difference between Fermi ener-
_ For the one electron case, the measurement is in the parifjias in the leads is less than the charging energy of the is-
eigenbasis. This is interesting since it results in Projectionzng. we model the DWS with a Hubbard Hamiltonian, with
onto nonlocal states. It has bee_n shown theoretﬁ:aih_d only a single spatial wavefunction per welll) and|R) for
experimentally that decoherence is slower for evenly biasedihe jeft and right wells. We assume that the Hilbert space for
DWS, so this kind of measurement may be more robusiye system is therefore two-dimensional, which is reasonable
against gecoherence. This problem has been considergdpigher excited states are inaccessible due to the strong
recently” confinement of the quantum dot potentials. Therefore, each

For a two-electron system we show that this measuremenfq|| may be populated by at most two electrons, in different
approximately projects the DWS onto the singketen and spin configurations.
triplet (odd) subspaces. It is therefore a method for perform- = 1 Hamjltonian for a system of interacting electrons is
ing spin sensitive detection using electrometers, which is iMgiven by
portant for readout of certain quantum information process-

ing scheme$. ) 1 o
The paper begins in Sec. Il with a short, generic discus- Hyoi = E HijCinga“‘E > ViimnCioCngsCmo’Cigs (1)
sion of the microscopic model of a few-electron system in- .o ijlm,oo’

teracting with an idealized SET, itself in contact with a con- ) o o

tinuum of lead modes. Following this, in Sec. Il we deal wher.eci,(, |s.a(ferm!on|c) anmhllatlon ogerator for an elec-
with the single electron case, and in Sec. IV we deal with thd"n in spatial mode and spinoe {7, | }" and

two-electron case. Within each of these two sections we de-

velop the measurement Hamiltonian from microscopic con- leads

siderations, from which we derive measurement and mixing /

times. After showing in each case that the measurements b

work in principle, we estimate the effects of a significant QSET island

problem in the fabrication of this device, namely the preci-

sion with which the SET island must be placed in the mid- @@

plane of the DWS. In Sec. V we conclude the paper with

a discussion about experimental implementation of the FIG. 1. Schematic of the physical system under
scheme. consideration.
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* Y = --A T L= N
Hij = J P ¢ (N(-A2VI2m+ U gi(r),  (2) v ’ g_}vssunscmcjrr As® Himeas (8)
where we have ignored the spin degree of freedom on the
3 3 . . SET island. There are four distinct terms of this form that
Vigmn= | &y [ a2 ¢ (r)i(r)V(ri=ra)dn(r)dm(ra),  need to be included, fdr j taking the four possible assign-
ments of+ or —. If the physical arrangement of the double
(3 well and island as shown in Fig. 1 is symmetric about a line
V=irlet Iy ; ; bisecting the double well potential, thet= Vg, =V¢q =0,
where ¢(r)=(r|c,|) is the spatial wavefunction for mode as discussed in Appendix B. Asymmetry results in nonzero

(_assummg bOt“h spin st:ates havg the same spat_lal wavgfunghd for the development of this section, we assume that it is
tion), | ) is the “vacuum” state, with no quasi-particle excita-

. ; . : . symmetric, so tha¢=0. Thus, to describe a DWS interacting
tions, m is the effective masdJ(r) is the electrostatic con- with a SET we need to specity,,p andH
fining potential andV(r)=e?/4ms,r=q/r is the Coulomb P Hub meas

potential.
We choose a basis set such thgtis diagonal, which we Il PARITY MEASUREMENT FOR SINGLY OCCUPIED
truncate to the lowest two eigenstates for the DWS, and a DWS

single states, on the SET. In the absence of an external bias The system we consider in this section consists of a single

between the wells, this corresponds to takinge {+,~,S},  glectron shared between two wells, so we ignore spin indi-

where * are the symmetric and antisymmetric superposi-ces. \We now establish the feasibility of performing a mea-

tions of the localized, single-particle states, referred to hergyrement in the parity eigenbasis of a single electron shared
as the parity eigenbasis. That is|t)=cl)  petween the two welis.

=(|Ly£|R)/\2(L£(R|L|)). The first term of Eq.(1) be-
comes =, (A/2)(A,,—A_,)+wohs, Where A, =cl ¢, and A

. . ¢ A. Derivation of measurement Hamiltonian
=H,,—H__ is the tunneling rate of a localized electron,

which we estimate in Sec. V. For a single electron on an unbiased double well, the in-
Expanding Eq(1) gives teraction terms of Eq(l) vanishes, so the Hubbard Hamil-
tonian for the single-particle system is given by
Hrot = Histana* Hieads™ Hun+ Hhun + V, (4) Huw = An,. (9
whereHy,;, is the Hubbard Hamiltonian for the DW¥,is ~ We have used the fact that, for a single-particle, two-level
the Hamiltonian for the interaction between the DWS and thystemfi,+i_=1 is the identity, and have also discarded
SET and terms proportional td. In an alternate notation, we identify
. n, with the o, =|L)(R|+|RXL| operator.
Histana= @oNs, (5 For the symmetric case,
Hieads= 2 (P + D), (6) V=g ® (Vggrily + Voo M) = NG, (10
K where 6=V, Vs and we have again used the single-
particle, two-level system identity,+h_=1. It is evident
Hun = 2 TiChCs + TrChiCs + H.C. (7)  from Egs.(9) and (10) that the measurement Hamiltonian
k and the system Hamiltonian have the same energy eigen-

states. Therefore, the measurement process will nondestruc-
tively project onto energy eigenstates of the DWS, which are
the delocalized symmetric and antisymmetric wavefunctions.
That is, it is a QND(quantum nondemolitignmeasurement,
which simplifies the analysis greatly.

Here wg is the island energy level, in the absence of interac
tions with the double well potentialy, are the energies of
densely spaced lead modésndr denote the left and right
leads, respectivelyf; are the corresponding tunneling rate
between modé in leadl(r) and the SET island.

To computeV we assume that the wavefunction for elec-
trons on the SET island vanishes in the region where the ) ) . )
wavefunction for the electron on the DWS has support, and AS discussed in Appendix A, the master equation for the
vice versaso that, for instancep’(r)¢(r)=0. This assump- DWS and SET island is given by
tion is a good one for systems such as the Kane profasal, : . N
Na' in Si° where the tunneling rate between the SET island R() = = i[Hyub *+ Histana RO T+ (1 + %) DIACIIR()
and the DWS are negl|g|b_le. o _ _ _ + v/ DA, CR(t) + ﬁrp[ﬁJrC;r]R(t), (11)

The consequence of this assumption is that if any index in . _ . _

Vijmn is s, thenV,jy,, is zero unles$=j=s or m=n=s, where whereR is the density matrix for the DWS and SET island

s labels an electron on the SET island. Therefore the onl@nd D[A]B= J[A]B- A[A]B=ABA'-(ATAB+BAA). We
Coulomb terms that contribute to the interaction between thassume that the reduced state of the SET island is diagonal in
SET island and the DWS are given by the number representation, so

B. Master equation for symmetric system
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Hy w6 V=h® (60, + e(cic_+clc,)). (14)
Wy Ky This shows that the asymmetry rotates the measurement ba-
- sis by an anglep=tari’(e/ §) away from the parity eigenba-

sis, that is, the preferred basis for the measurement is
FIG. 2. SET island energies relative to the lead Fermi level{cOS ¢)|+)+sin(¢)|-),—sin(¢)|+)+cog ¢)|-)}. We therefore

depending on the state of DWS. require thate<< 6 in order that the asymmetry have a negli-
gible effect.
R— po ® |0)(0] + py ® |1)(1]. (12) In Appendix B we estimate and § to be
The reduced density matrix of the DWS is given pgt) e~q 2XXL <q 2Xs and
=TrdR(t)}=po(t) +p1(1). In Appendix A we solve Eq(11) [re=rYm3 ™ Tr - rym2
and the steady-state reduced density matrix of the DWS is 1 1
++ ++ ~ — o=~ LR - ) 15
TrdRE)} = () = (37(0) + (0D, + (5 (0) L >( PE rgvm|) (19
+p; (0)n, (13)  where r, is the “center-of-mass” of the left wellyq

wherepP9=(p|p|g). This shows that the diagonal elements of = X5 s, 2 i the position vector of the SET island and we
the system density matrix are unchanged, while the Oﬁ_choose the origin to be_at the mldp_omt of the I.DWS' Note
diagonal elements have completely decayed, which corret—hat %=0 for a symmetrically placedisland, and is assumed

to be small.
sponds to QND measurement. The condition thate<§ is therefore satisfied ife/d

~2XJrIM/|r —r¥MAL|Ry<1. This is a tight constraint,

. ) . since it requires that the asymmetry, quantified by
Since the measurement for the single-electron case is 2<S|r§ym|/|rL—r§ym12 be much less than the overlap of the

QND measurement, we can straightforwardly calculate thg,:zjized wavefunctiond_ |R). With the help of al-gate(as

expected currents and measurement times for the device. Jéferred to in Kan® (L|R) ma .
_ o _ y be made as high as 0.53,
we chooseh(wo) =fi(wot §)=1=fr(wo) andfi(wot =0, 85 55 assuming a typical scale of device|qf-r¢~30 nm,

shown in Fig. 2, then the current through the SET is sensitivdtli-n

C. Measurement time

to the state of the DWS. In this configuration, the SET islan he elements of the SET and DWS would likely need to be

h ; S . ade with a precision of 1 nm or less, which seems difficult
is conducting when the DWS is in a symmetric state, so a, P

ti, fl d ducti hen i ti t ith current technology.
currentl, TOWs, and nonconaucting when in an anfisymme® — ryjg jssye may not be so significant for electrostatically
ric state, sa_=0. Thus the measurement amounts to dlstln-d

S ; S efined dots, since the position of the SET island and DWS
QUIShIn% the currents, anc:c_l_—O _through the SET. hich el may be changed by the variation of surface gate potentials. It
trorfgrht)peosrilr;]r%egfl'fctﬁgnég?ﬁggataererz;ﬁsse:;)\gng €1€Cs a serious problem for donor systems with SET’s grown by

’ Yr: etallic deposition, since the location of the donor atoms
_Thus th‘f rat_? of transport of_electrons _through_tlhe iET islan nd SET island are fixed during fabrication.
is 1/(y;~+v,7). The current is thereforg.=e/(y, "+ v, ).

The measurement time is then the time required to distin-
guish two currentsj, from i_=0 in the presence of shot ) ) ]
noise. Since the transport of electrons through the SET is ASymmetry in the placement of the SET island induces
Poissonian, the probability of detecting zero electrons tunMixing in the state of the DWS, so there is a mixing time
neling in a timer through the SET island, given that a mean associated with asymmetry. The calculation of the mixing
currenti, is flowing is given byPy(T)=e” LY We there-  Ume is somewhat lengthy, but not difficult. We derive an

L ) unconditional master equation for the density matrix of the
fore conclude that the measurement time.js,&= %+,

X th bability of not detecti ¢ i . DWS and SETR. The solution to the master equation has
since the probability of not detecting a tunneling eventan exponentially decaying terms, with different time constants.

few multiples of this time is small. This agrees with the For the sake of simplicity, here we present the results of the

measurement determined frqm the d_ecay rate of off d'a.gonaéalculation, and leave the details to Appendix D, which fol-
elements of the system density matrix, found in Appendix A.IOWS from the results of Appendix C. Taking=7, the most

rapidly decaying term gives the measurement tifgqs
=2/y, which is unchanged from the symmetric cage

We now turn to the important practical issue of how pre-within O(€?)]. The slowest decaying term gives the measure-
cisely the SET island needs to be placed with respect to thgent induced mixing timet,,,=2(5+A)?/3€%y, so the con-
center of the double well potential. Here we assume there igjtion for a good measurement is thaf, > tyeas Which oc-

some asymmetry, which may, for example, arise from fabrigyrs if 5+A> ¢, in agreement with above. Wharr0, the
cation, so that=Vsg_# 0. We will estimate the magnitude measurement is QND;, =2°.

of this quantity later, but first we will determine the effect of  \when e+ 0, the dynamics are divided into two regimes,
the extra terms in the Hamiltonian that arise. Including thist<t_. andt~t,,,. In the energy eigenbasis, for short times,
term inV gives t<tnix the diagonal elements of the density matrix are al-

E. Mixing time

D. Effects of asymmetry
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most unaffected while the off-diagonal elements decay at a A. Derivation of measurement Hamiltonian
rate y/2. This corresponds to the process of projecting the | this system, there is one singly occupied singlet state

DWS onto its energy eigenstates. Over longer times, ang three singly occupied triplet states, which are given by
~tmix, the diagonal matrix elements decay to their steady-

state values, given by EqDG6), corresponding to almost |S>=i(cT ¢t —ch.ch ) (16)
complete relaxation of the DWS to its ground sthte. J2o T e
F. Summary
: _ Ty =clcl), 17

Performing a “nonlocal” measurement by projecting onto i) € i 17
the parity elgenba5|s_ of a DWS is in prm_mple p_o_55|ble. A T y=chet ] (18
SET placed in the midplane of the DWS is sensitive to the 1 + =1/
local charge at the midpoint of the system, which depends on L
the parity of the state. IS S S

Estimates of the sensitivity of such a device to asymmetry IThy>= \;’E(C‘TCW crcp)- (19)

in the placement of the SET island suggest that it would need ) ) ) )
to be placed with a precision better thdn R)~3% of the The spatial wavefunction of the singlet state is clearly sym-
typical device dimensions. For a donor based system, this {1€liC, while the spin wavefunction is antisymmetric. The

around 1 nm, which has been demonstrated recently for peonverse is_tr_ue for the triplet state;. Written in the par_ity
donors in SitL eigenbasis, it is clear that there are different charge densities

The scheme may still be usefully applied in the casePetween the wells depending on the state: the singlet state is

wheree= 8, where the preferred measurement basis is clos@ SUPErposition of terms with nonzero amplitude to find ei-
to the parity eigenbasis. Applying a bias across the DWS, si1ef zero electrongboth in the|—) state, with zero charge

that one well is at a higher potential than the other, woulddenSity at the midpointor two electrons(both in the|+)
tState, with nonzero charge density at the midpoiatexist

allow one to rotate the double well energy eigenbasis on
9y e ietween the wells, while the triplet states have an amplitude

the measurement eigenbasis. p I e el | | i th
The precise placement of the SET island in an electrostati? find only a single electroronly one electron in thet))
ate to be located at the midpoint. There are also two doubly

cally defined system may not present serious problems, sin ) .

it may be moved about after fabrication by varying surface9ccupied states given by

gate voltages. In Sec. V, we give estimates of experimentally 1

accessible parameter values, and show that this proposal is D,y == (ccl +cliel D, (20)
experimentally viable. V2

1
IV. SINGLET/TRIPLET MEASUREMENT FOR DOUBLY D)= J_E(CiTCIi +clcl)). (21)
OCCUPIED DWS v

As discussed in Sec. Il, we need to specify the DWS

We consider here a DWS populated with two electronsu namics, given by as well as the interaction between
shown schematically in Fig. 1. As in the single electron par- y ' 9 Hubr

ity measurement scheme, the SET island is placed in ththe DWS and the SET, given fmeas In the parity eigen-

midplane of the DWS, so that it is sensitive to the chargeS‘ﬁS's’HHUb is given by

distribution on the DWS. Hiuup= A/2(Ay; + A, — Ay = A2)) + U/2((A, + A (R
The physical principle that we exploit is the fact that a . T T T "
pair of electrons in a triplet state are Pauli blocked from A+ (€ FeyCh)(CyCy*eiey)), (22
being simultaneously at the origin of the DWS, so the probhere A=H,,~H__ as defined earlier and=V,,,, is the
ability amplitude to find two electrons in a triplet at the ori- qouble occupation Coulomb energy. The triplet states are
gin is zero. In contrast, this restriction does not apply to ajgenstates of the two-site Hubbard Hamiltonian, so de-
pair in a singlet state, so there is a nonzero probability amgoyple from the other states. With respect to the ordered

plitude to find two electrons in a singlet near the origin. Thussub-basig|S), |D,),|D_)} the matrix for the Hubbard Hamil-
there is a small variation in the local charge density at th§ynian is

origin between singlet and triplet states, which can in prin-

ciple be measured to distinguish these subspaces. This has -U A0
some similarities to another singlet-triplet measurement Haw=| A 0 0. (23
schemé? 0 00

Such systems may be used to implement quantum infor-
mation processing tasks. In certain instances it is important We now turn to the interaction between the two-electron
to distinguish whether the two electrons are in a singlet stateystem and the nearby SET island populated with, at most,
or a triplet state, thereby providing information about theirone electron. There are four distinct terms in E8) that
spin state, e.g., distinguishing a state from the triplet states iseed to be computed, forj taking the four possible assign-
necessary in the three-in-one encoding scheme developed hyents of+ or —. The triplet states are once again eigenstates
DiVincenzoet al® of Hpneas With eigenvalueVg, .+ Vg —. Again with respect to
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the ordered sub-bas{S),|D,),|D_)}, the matrix representa- shift by calculating the same adiabatic energy shift for the

tion of Hyeasis ground statdS,)=|S)~[(«s+A)/U]|D,) which is very close
a s 0 to the singlet. We find
Hreas™ | 6 @ 2€], (24) AEg= <§1|(HHub+ HmeaQ|§l> - <§0|HHub|’éO>
02 a =a- 56+ 24)/U. (27)

where a=Vsg.,+Vss -, 6=Vsgr1~Vss— and €=V, as de- Thus, the difference between the SET island energy for
fined earlier. As discussed in Sec. Il D, if the physical ar-y,q triplet and singlet state ISE=AE;—AEq= &(5+2A)/U
rangement of DWS _and _SET_|sIand as shown in Fig. 1 'Svhich corresponds to a differential induced SET island en-
symmetric about a line blsec_tmg the double well pOtem'al'ergy depending on the state of the DWS. It should therefore
then.e=0. Asymmetry resm_JIts e # 0. . e possible to arrange the lead energies so that the SET cur-
Finally, we include the internal dynamics of the leads an ent also depends on the state of the DWS. By tuning the
of the island, which is assumed to have at most a S'ng!?ead chemical potentials so that>E;> u, >Eg current

electron, as we_II as tunneling between the leads and the iy, through the SET if the DWS is in the triplet subspace,
land. The Hamiltonians for these parts of the complete SYSput does not for the subspaf&),|D.)}. This configuration

tem are given in Eq95)—<7). We now have the ingredients . - S
for the r%odel Hargisl(to)r:i(a% of the DWS, SET igland and'® shown later In Fig. @), WhereET:‘."GvTS“es n between_
' the lead Fermi energies, aritk=w, lies below the Fermi

leads, energies. The other levels shown in Figaj5represent pos-
(25) sible inelastic transitions as Iegd electrons_tt_mnel onto_ the
SET island, and are described in more detail in Appendix E
1. In this manner, the two subspaces may be distinguished by
B. Measurement of symmetric configuration measuring the SET Current.. . .
) ) i ) Since the measurement is QND in the triplet subspace, we
In this section, we will assume that the SET is placedyse the same arguments as in Sec. Il C to estimate the SET
symmetrically with respect to the DWS, &&0. The triplet  cyprent when the DWS is a triplet. Assuming an electron
states andD_) are energy eigenstates of bob,, and  tynnel between the leads and the SET island at ayatieen
Hmeas Similarly, sinces and A are small,(S) is approxi-  for the configuration of lead energies described above, the
mately an eigenstate of botf, and Hyeas The induced  current for the triplet state will ber=ey/2.
charge on the SET island is different for the triplet states The singlet state is approximately an eigenstatéigf;,
compared with the singlet, due to their slightly different andH,.,, so the same reasoning concludes that the singlet
charge configurations, so different currents flow through thesurrent should be approximately zeig~0. The measure-
SET depending on the subspace the electron pair is in. Thugent time for distinguishing these two currents is then
distinguishing distinct currents through the SET yieldp-  roughlyt,,,=2/7, just as in Sec. Il C.
proximately QND projective measurements onto the singlet  As mentioned above, the singlet state is not quite an
or triplet subspaces. This is analogous to the situation desigenstate of the system or measurement Hamiltonians, so
scribed for the single particle in Sec. Il for doing QND there are corrections to the latter part of this argument. The
measurements in the parity eigenbasis. dynamics mix the singly occupied std® and the doubly
The induced shift in the SET island energy depends on theccupied statéD.). Thus there is a small amplitude for the
state of the DWS. We can calculate the SET island energgvolution to induce transitions frod®) to |D,). In general
shift by imagining the DWS in a given state, then adiabati-these transitions are strongly inhibited since there is a large
cally turning on the SET-DWS interactio¥, Physically, this energy gap~U to excite the DWS to the doubly occupied
corresponds to slowly bringing the occupied SET islandstate. Appendi E 2 shows that in the steady state, the prob-
close to the DWS, and observing the change in energy of thability for the DWS to be in a singlet state is very close to
total system during this process. Comparing the adiabationity, (Sp°JS)=(Sp3*+p;IS9=1-(5+A)?/U% This means
energy shift for a DWS in a singlet with the energy shift for that the measurement on the singlet subspace is indeed al-
a DWS in a triplet gives the differential shift of the SET most QND, since the singlet is not changed greatly during
island between the singlet and a triplet states. measurement. Associated with the infrequent fluctuations be-
A triplet state is an energy eigenstatestf,,+aHyeas  tween|S) and|D.) is a small current. To estimate an upper
where Osa=<1 is the adiabatic parameter controlling the bound on the currentig that could flow through the SET
coupling strength. Therefore the adiabatic variation of thewhen the DWS is in the singlet state, we compute the rate at
coupling does not change the eigenstate, just the eigenemich electrons cycle on and off the SET island. In Appendix

HTot: HHub+ V+ Hisland+ Hleads+ Htun-

ergy, E 3 we showig<?2eyA?(5+A)?/U*<i. This shows thatg
and i are very different, and the measurement is indeed
AEr = (T11l(Hiuo+ Himead | T11) = (T [ (Huu) | Ty ) = @ C|OS€TtO QND.
(26) C. Effect of asymmetry

For a singlet state, which is almost, but not quite, an Asymmetry,e+ 0, couples the statd®,) and|D_), evi-
eigenstate ofH,,,+aHmeas We can estimate the induced dent in the form ofH s iN EQ. (24). We find the steady-
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state probability for the DWS to be in a singlé§p|S)=1  independent, single-particle Hamiltonian. Assumiig g
—-(8+A)?/(2U%). We also compute the rate at which elec-:q/|rL]R|, we may again evaluate the integrdR{H|L) and

trons cycle on and off the SET island, described in Appen-, ; P : .
dices E 3 and E 4, which leads to an upper bound on the(L|H|L) in prolate ellipsoidal coordinatésto find that the

current given byis< e(y;+y,)(32+A2)(5+A)2 2U%. Both the single—particleZtungelin&q rate is given to reasonable approxi-
steady-state singlet probability, and the upper bound on thgnatlon byA~ 5qu° de™®.

current for the asymmetric case are similar to the results fo&o:grr ;Tgr?]ysmg:;ailr?, Sei.g\}vﬁle(f)e:ﬁalo[ﬁhr%.%se;\/rr;rgég:a:balle
the symmetric case derived in Appendide 2 and E 3, in- Y '

dicating that the measurement is ratliesensitiveto SET estimate for t~he height of the SET |_sland_?£)ove the_donor
asymmetry. For larger values of, when XJr™/|r system, andi~30 nm and a Bohr radius gf =3 nm, giv-
M2 /i | h is driven into th SI s L ing (L|R)=2x 1073 and ignoring the anisotropic effective
—rs" ~<L|R>.’ the DWS is Qrwen Into the dQUby.OCCUDI?d mass of St>1%we haves=q(L|R)/|r{ =20 ueV. Similarly
subspace, which is the basis of an alternative smglet—tnple&~15 V Th f. Id S _ .d ¢ h
measurement scherta. ~15 ueV. These figures could be increased to perhaps
200 eV using an external-gate, since the overlap integral
D. Summary depends exponentially on th&gate potential. Finally we
i —~ \,15,16f d i H
L. . estimateU ~ 10 me or donor impurity systems. In an
In principle the scheme outlined above enables measurggecirostatically defined system such as GaAs dots, reason-

ment in the singlet-triplet basis. We have shown that it iSgpje estimates for the various parameters &re150 eV,
possible to measure distinguishable currents through the SE§_ 109 ueV andU~1 meV1016

depending on the state of the DWS. The energy scales for the g, example, suppose ~1 meV andA ~ 6~ 100 ueV,
singlet-triplet measurement are smaller than those for they A/u~0.1 then for the two-particle case we hakgT
single-particle system, by a factor 65+A)/U, and this re- <109 4ev, i.e. T<1 K. Therefore, it is conceivable that the
quires the lead temperatures to be smaller by a similar factogjnget-triplet measurement could be done at 0.3 K in elec-
We have also established that asymmetry in the fabricatiofostatically defined dots, which is an accessible electronic
of the device is less of a problem for this measurementemperature. In double donor systems, such as the Kane pro-
scheme than for the single- particle scheme. posal A=§~100ueV is still reasonable, but sinceJ
~10 meV, the relevant temperature is around ten times
V. ESTIMATION OF EXPERIMENTAL PARAMETER smaller, which is probably too small to be practical. This
VALUES problem would be resolved if a sufficiently largegate volt-

We now estimate the required parameters for various exdge could be applied to increadeand 6. Assuming thaty,
perimentally realizable systems. First we have assumed thatY =ksT=30 ueV~10"*s™%, thenir~1 nA. The proposals
5,A<U. We also require that the temperature be smaller® likely to work at temperaturdgT~ 6, A as well, but
than the SET energy shift induced by the DWS. Thus, for theVith faster mixing times and longer measurement times. The
single-particle case, we require tHafT< 5, and later Fig. fundamental requirement for both of the pr(_)posals in this
5(a) indicates that for the two-particle system, the temperaPaper is that the overlap between the localized wavefunc-
ture must be smaller than the splitting betweenand ws, tions, (L|R), be as large as possible, and preferably as large
i.e.kgT<< 8(6+2A)/U. This is obviously a tight constraint on as about 0.1.
the temperature of the system. Furthermore, as discussed in Finally, we estimate the effect of cotunneling by compar-
Sec. V C, we require the line-width of the SET island stateind the conductance due to resonant tunnelling processes,
must be smaller than the energy level splittings, & sfor ~ Gres With that due to cotunneling.. For weak coupling
the single-particle case angl<&(6+2A)/U for the two- bfatween the leads and the SET island these quantities are
particle case. Finally, cotunneling will contribute a back-9\ven by-"18
ground current due to tunneling via the virtual population of 2
the SET island. Gres= GGr and Gy, = M@,

In order to estimate the various parameters introduced for GL+Gr 3¢? &
this problem, we need to estimate the overlépR). We  \whereG, and Gy are the conductances of the left and right
approximate the localized states saerbitals bound to each SET-lead tunnel barrier. For the sake of estimation, we as-
site, so that(r |L)=u3% "t/ \'m, whereu is the inverse sume that these are equal @ =Gg=£2/% with ¢<1 for
Bohr radius. The integrdL |R) may be performed in prolate weak coupling. The additional current due to cotunneling is
ellipsoidal  coordinatdé to give (L|R)=(1+ud smallaslong a&.<Ges i.e. WhenkgT< 6/V¢, which is a
+u’d?/3)e ™+, whered=|r, -rg| is the separation between less stringent constraint than above. Therefore, as long as the
the double well minima. previously discussed conditions are met, cotunneling is

We can estimaté\, the tunneling rate between localized small.
states, for the case of @orbital bound to a donor atom, and
we will use this estimate for the case of electrostatically de- VI. CONCLUSION
fined gates as well. Following a similar argument to the deri-

(28)

i ~ In this paper, we have presented and analyzed a proposal
vation of Eq.(B6), we can show thad ~2((RH|L)~(L|R)  for performing measurements in nonlocalized bases of both
X(LIH|L)), where H=p?/(2my)+V,(r)+Vg(r) is the time- singly- and doubly-occupied double wells.
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The physical mechanism by which the measurements op- +y/(1 = (wp+ 8)D[ACSR() + {y fi(wg + 6)
erate is to detect the small variation in electronic charge den- ) -y
sity near the midpoint of the DWS. Based on reasonable + 7 fi(wo + 8)}DN,CIR(), (A2)

estimates for the system parameters the small difference in : TS

the Coulomb potential atan SET island due to the di1"feren¥Nhere fipy is the FermT| dllstrleutlon :or lead(r), DIAIB
charge distributions of different states of the DWS is in prin-E~7[A:|B_2“4[A]B,EABA _5(;A AB+BA A? and Y
ciple detectable. The detected signal is the current througﬁ“gi|Tiko| and v/ =mg,[Tyy|?, whereg; is the density of
the SET island. states in lead, ky=v2mwq/f andki=+2m(wg+x)/#.

The main difficulties in these schemes is the precision We takef(wp)=f(wg+ ) =1=f(wy) andf (wy+)=0, as
with which the SET island must be placed at the mid-planeshown in Fig. 2, and then EgA2) becomes
of the DWS and the required operating temperatures. For the .
single-particle parity measurement, a misplaced SET island  R(t) = = i[Hpup + Histans RO+ (3 + 1) DIATCIIR(D)
E(raoednuS?Sscésrgiaiiutrﬁénsgét!n the localized basis, which has + 5 DIA,CIR() + y,’D[ﬁIc;r]R(t). (A3)

The two-particle singlet-triplet measurement scheme is We will assume that the SET island is classical, in the
less sensitive to asymmetry in the placement of the SET, bulense that its reduced density matrix has no off-diagonal
requires very low temperatures to work effectively. terms. This is justified since the conservation of the electron

The required tolerance to such misplacement is at th@umber between the leads and the island means that the elec-
edge of current fabrication technology of 1 nm for doped Sitron number on the island is entangled with the electron
and 30 nm for GaAs dots, which may be achievable in lighthumber in the leads, and the lead degrees of freedom aver-

of recent experiments.?? Other constraints such as the op- aged over. Therefore we write the double well plus SET
erating temperature and tunneling rates are experimentaligland system in the separable form
achievable.
R=po ® [0)0] + py ® [1X(1], (A4)

T.M.S. thanks the Hackett committee, the CVCP, and ) ,
Fuijitsu for financial support. S.D.B. acknowledges supportVh€répoq is the state of the DWS with(@) electrons on the -
from the E.U. NANOMAGIQC projeci{Contract No. IST- S_ET island. The reduced density matrix for the DWS alone is
2001-33186 H.S.G. acknowledges financial support from given by p=Tr{R]=po+p;.
Hewlett-Packard. We now turn the master equation into a pair of coupled

equations forpy and p; by computing the matrix elements

(O|R(1)|0) and (1|R(t)|1) using Eq.(11):

APPENDIX A: MASTER EQUATION FOR SYMMETRIC Po(t) = = i[Hpup po(H 1= (31 + ¥ A[A_]po(t) + v, JT. (1)
SINGLE PARTICLE SYSTEM oo
- N AN ]po(t), (A5)

The Hamiltonjan 'for the complete system of double well, p1(0) = = i[Hpup p1 (0] + (9 + 1) AA_Tpo(t) = ¥ AL, ] s (1)
SET and leads is given by )
+ ¥ I po(t). (A6)

Since all the system operators in these equations are number
Following the derivation of Wisemaet al.'® we can  operators, the equations are straightforward to solve. We note
write down a master equation for the reduced density matrixthat p, ;= ., are fixed points of the equations, for some
R, for the system consisting of the double well plus the SETcoefficientsa, determined by the rate balance.
island. The dissipative terms are formally the same, where Taking y,=, and with respect to the basjst+), |—)}, the
we identify c, and c,, respectively, withc; and b in their  solution to these unconditional equations is
notation. The result is

Htot: HHub+ V+ Hisland+ Hleads+ Htun- (Al)

. 1 29t 1- —2yt

R(D) = = ilHpun* Histang ROT+ {%(1 = fi(wo)) + %(1 oolt) = +§ b’ (0)+ =——pi"(0) €3y (0)
0 - ’

— f(00)}DL(L = A,)CR(E) + { % (wp) & 32,74(0) & 2557(0)
+ % f (0 }DL(L ~ A)CIIRM) + {3/ (1 - fi(wo + 8)) (A7)

|
1-e ++ +e ! 4+ Y
pu(D) = > Po 0)+ > 1 0 e "p; (0) | (A8)
e "2p1*(0) (1-e2Mp;7(0) + p;(0)
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wherepPd=(p|p|q). It is evident that the diagonal elements of ~ Estimating & is more difficult, and without detailed
the reduced density matrix for the DW= py+p,, are con-  knowledge of the localized wavefunctiap(r) our estimate

stant as required for a QND measurement, while the off-of it is somewhat less controlled than thatofFor a sym-

diagonal elements decay with two characteristic time scalesnetric system we have

the longest of which is 2y, consistent with the measurement

time computed assuming Poissonian tunneling statistics in 0= Vg = Voo
Sec. llI C. :<+|\A/|+>_<_|\A/|_>
APPENDIX B: APPROXIMATE EXPRESSIONS FOR € ~
AND & = m(@l +(R)V(L) +|R)
We now estimate using Eq.(3). For the purposes of this 1

estimate, we will assume that the SET island wavefunction is - -
a delta function located at={xs,Ys,Zs (X iS the axial posi- 2-2LR

tion of the island, ana,=0 for a symmetric arrangemeras _ YT ~ 2
shown in Fig. 3, i.e|¢g(r)[?=8(r-ry), so = ZARVIL) - ALIRYLIVIL) + OKLIRY).  (B6)

6:‘Vss'-— =q d3rM:<+

:q(<L r-rd

(L] = (ROV(IL) - [RY)

1
|r - rs|

approximate(L|V|L)=q/|r_-rZ"]. We can estimate an up-
per bound on(R|V|L) by considering thatg, (r)¢g(r) is
|_> - <R R> peaked with a maximum at the midpoint of the double well.
Thus, the potential at the island due to the charge distribution
@, (r)¢r(r) will be less than the potential due to the entire
+{R L>—<L >> (B1)  weight of this product located at the midpoint. That is
(RIVIL) < q(L|R)/|rZ™. Therefore an estimate for the mag-
where (r [L)=¢ (r)=¢(r—r), ¢(r) is the localized wave- nitude of 5 is
function of a single site and is the “center-of-mass” of the
left well. The last two terms cancel for all, and if x;=0 5~ <L|R>< 1 _ 1 ) (B7)
. . q 5 S
then the first two terms cancel also, hence our previously r™M Jro=rdM
stated result tha¢=0 for a symmetric configuration. Fog
#0 we have

<L1

|I‘ - rs|

> Using the approximation that is tightly bound allows us to

1

|r - rs|
1

|I’ - rs|

|I’ - rs|

|r - rs|

, APPENDIX C: DERIVATION OF MASTER EQUATION
LY = [ o |p(r — 1)) FOR NONCOMMUTING SYSTEM AND
Ir=ry MEASUREMENT HAMILTONIANS

|p({x = x.,y,2D)[? In this appendix we derive a master equation for a device
o2 — 2 —__,2° Whose system Hamiltoniai{s,, does not commute with the
VX=X (y =Yg "+ (2= %) measurement Hamiltonia],,cas The results from this ap-
(B2)  pendix are used in Appendices D and E, wherélgs
=Hu, The total Hamiltonian for the device is taken to be

:fdxdydz

We assume the asymmetry is small so tkatis a small
quantity, and we expand the square-root in a power series

abouth:O to find HTot: Hsys+ V+ Hisland+ Hleads+ Htunr (Cl)
1 _ 1 2 whereV= I”\]s® Hmeasand Histand™ wOﬁSi HIeadS:Ekwk(ﬁlk"'ﬁrk)
L r—ry L/=\L = rom L )+ X7+ O(X5), and Hyn=2,TiChCs* TrChCs+H.C., as given in Sec. II.
S s The general method for this derivation follows several
(B3)  steps.

(1) We move to an interaction picture to transform away
S

island and = /d%[|(r —r)|?/|r =r¥™3]. Following the &l the free dynamics. _ _
same reasoning, we can show that (2) Using the Zassenhaus relation we factor the interac-

tion Hamiltonian into a product of lead operators and a
1 1
<R> R= <R m ‘ R> - Xs7. (B4)
S

|r - rs|
We can estimatey by assuming that the localized wavefunc-
tion is very tightly bound, so thdip(r)[>=48(r), and thenz
=x /|r —r2m3, Since  (RI1/|(r=rZ™)||Ry=(L|1/|(r
-rM|L), we find that

2X X <q 2Xq
-

wherer?™ is the intended, symmetric location of the SET

(B5)

€= .
q| re-rom? FIG. 3. Geometry of an asymmetric system.

re
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finite-dimensional operator acting on the DWS and SET. B,(t) = €(“k@0)tgiHsyd@i(HsystHmeadt (C6)
(3) By tracing over the lead modes, we derive a Markov-
ian master equation for the DWS and SET density maRix,

In this master equation, the Fourier component8f) ap- ) :
the double well, SET island and leads evolves according to

pear in the Lindblad terms. he Schrédi on in the i . ; K
We transform to an interaction picture with respect to thet€ Schrodinger equation in the interaction picture, taken to

o ~ second ordel?
Hamiltonian Ho=Hg s+ V+Higjangt Hicads SO that Hrg=Hy

is an operator acting on the DWS alone.
The state matridV of the entire closed system including

+Hyn and the interaction picture Hamiltonian id(t) W(t + At) =W(t) = iAt[H,(t), W(t)]
=gHoH e Mot —H,=eMo'H, e, In order to computeH, t+At
we first note thatH,e,qs @and Higlang COmmute with all other —Atf dt'[H,),[H,{t"),W({t")]]. (C7)
terms inH, so eHot=gMHsysVtgHisiandgHieadd, Using the op- t
erator identities Making the first Markov approximation, we assume that the
efic= ¢ andce = ekc, (C2) system may at any time bg written A4t) =R,(t) ® p; ® p;, SO -

A that each lead is always in a thermal state. Then averaging

wherefi=c'c and[x,c]=0, we find that over lead degrees of freedos,, and noting that(c;;

=<C|T(r)k>=0' <Cl(r)kcr(l)k’>:<C|T(r)kcr(l)k/>=<C|T(r)kC:(|)kr>:0 and
<cfr(r)kc,(,)k,>:5(k—k’)f|(r)(wk), wheref,, is the Fermi distri-
(C3) bution for lead (r) and 8(x) is the Dirac-delta function. Then

R the SET island plus DWS interaction picture density matrix,
Since[Hgys, VI=hs® [Hgys,Hmead # O the operator exponen- R(t), satisfies
tials appearing above cannot be factorized. However we may
simplify the expression using the Zassenhaus operatoR(t)=— f A0 Tl ?f (@) + g Trdl 2F 1 ()
relation?® which is an inverse relation to the Baker-

H (1) = D (Tl + Tyl glerenteiae Vg it sVt 4y ¢
k

Campbell-Hausdorff formula, and it states thaf*® t

=eAePll;,€CilAB) where eachCj[A,B]=(-1)IC|[B,A] is a xf dt'{B(t)B](t")ccIR (1)

sum of nested commutators, each term of whichAasdB -

appearing at least oncée.g. Ci[A,B]=-3[A,B] and - Bl(t)cIR (1) cBy(t") - BL(t")CIR (') caBy(1)

CJ[A,B]=-%([A,[A,B]]-[B,[B,A]]). The1 in the index of
the product indicates that the product is ordered in increasing +R (1) cCiB(t)Bl(t)} - J A0 T 2(1 = (@)
order ofj, since the factors in the product do not commute.

For our purposes, the detailed form ©f is not important. t
Taking A=iHg,¢ and B=iVt=ifigHe,d, and noting that + 0| Tl (1 — fr(@))) Xf dt'{BJ(1)Be(t")cleR (1)
nZ=fs so that C[iHgd,iMHmead]=(it) **Ci[Hsys Hmead —
we have - By(H)cR (t)e!Bl(t) - Bi(t)cR (1) cIBL(1)
6 Hoys Vi @i oyt + R (t)cleBi(t)BUv)}, (C8)
- eiHSygeiﬁsHmeagl—[ e(it)j+1ﬁst[HsysHmea;CS whereg; is the dgnsity of states fqr leadWe further assume
i that the dynamics of the system is slow compared to tunnel-

ing rates, etc. so that we may make the replacerfgit)

(i) T IAC [HgyoH -ifigH -iH . . . T
x ] e " CilHysHmeadeNHmeateHeyd, —R(t) in the above integrals, making E@8) local in time.

I ' Equation(C8) no longer depends on the lead degrees of free-
:eiHSystH e—(it)Hle[HsysHmeaQe—iHmeage—iHSyécs, dom, and so is an equation for a finite-dimensional system.
il With the aid of some further approximations, we may per-

i i form the integrations ove®, andt’, which we now do.
— alHgydami(HgystHmeadt _ k ) .
€ ore TeeTmeGs, (C4) In order to do the integrals, we note that each term in Eq.
where the first equality follows from direct substitution into (C8) is finite dimensional so has a finite-dimensional matrix
the Zassenhaus relation, the second equality follows froniepresentation. Further, we may wrigg(t) as a discrete Fou-
repeated applications of Eq€2), and the final equality fol- rier decomposition,
lows by inverting the Zassenhaus relation. We may therefore N
write the interaction Hamiltonian as Bi(t) = >, e@emtp (C9)
Hi(0) = 2 (Tycl + Trch) € eoigfsyderiHoysHneadic + H.c. "
k for some finiteN and operator®,,. From Eq.(C6), the ex-
_ + 1 plicit form of Py, depends on the explicit form ¢ sand is
_Ek: (TikCi * TriCri) B(t)Cs + H.c., (€3 important for the discussion of the dynamics of the system.
The operatord,,, for the single-particle DWS are given in
where Eq. (D4). For the two-electron DWS, they are given in Eq.
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(E1) and Eq.(E7) for symmetric and asymmetric cases, re-
spectively. We now perform the integrations for one of the

R(D) = = i[Ho,R]+ 2 {(fi(0m) + %l wm) DIPLCIR()
m
terms in Eq.(C8) as an example, to show explicitly the ap-

proximations we make. For instance the second term of Eq. + (1L = filon) + 71 = f(0n)) DIPRCIRO},
(C8) is (C12
t
J day 9||T|k|2f|(wk)f dt’ Bi(t)c{R (HeB(t') APPENDIX D: MASTER EQUATION FOR ASYMMETRIC

SINGLE-PARTICLE SYSTEM

=2 | doyg|Tul?fi(wy) _ _ . .
mn We now derive a master equation for the single-particle
t DWS for the case that the SET island is not placed sym-
% f dt’ei(wk_wrn)te_i(wk_wn)t’PTmC;rRl(t)CSPn, metrically. Equation(14) gives the Hamiltonian for the Cou-
— lomb interaction between the SET island and DWS as

:2 day 7| Tl *fi (@) 8wy = wp) V=@ (o, + G(CIC‘ +cle)) = As® Hineas  (D1)
e When e€# 0, [Humeas Huusl # 0, SO we use the derivation of
x (@nmemtpl ¢TR (H)cgPy, the master equation in Appendix C.
t + First, from Eq.(C6),
~ 2 ¥ifi(0m PLER (DCPm, (C10 _ T
m B(t) = el(wk_wo)te'HHubte_'(HHub*'Hmeagt, (D2)
- . - . . B 4
where v, is defined in Appendix A. from substituting the = dlocemtp (D3)
Fourier decomposition oB,(t), the second equality follows =1 m

from evaluating the integral ovef, and to make the final
(approximate equality we have made a rotating-wave ap-
proximation, where we take(“n-*mt=g§__ This is reason-
able if the frequency difference,— wy, (for n#m) is suffi- +e (@0t + g0 NG ) (D4)
ciently large, since when we come to solve the resultin ~ ot ~ o~
differgntialgequation terms containing a faceen=emt will Swhere G, =~5.=[~e/(5+ A)][+)(-| and Fi.=R.~5.. Thus,
be rotating rapidly, and so average to zero, to a good a fhe FOUY'er components’._?m, of Bk(t) are the opgrators ap-
proximation. This approximation is reasonable whep, is pearing in Eq(D4) associated with the four Fourier frequen-

. Cies oy e{wg, wgt d+A,wyt b, wy—A}. Here we have ne-
much smaller than the smallest energy level separations m € {@o, o 0 04}

Vi) < @n—wn fOr N#M glected terms oD(e?) or higher, since these are negligible.
1(r) n m» -

Applying these arguments to the other terms in &28) The master equation for the SET and DWS is then
results in the master equation fBy(t)

:eiwkt(e—imot'ﬁ_ + e—i(wo+6+A)t‘5,_

R(t) = = i[Hpup + Higtana RO+ (% + %) DIA_CLIR(®)
+ y/ D[TL.cgR(t) + 1 DIRICIIR(D) + (
+ ¥ DGR + ¥ Dla_cJR(M) + ¥ D[ cIIR().

+ (1 = fi(m) + %1~ fy(0m)) DIPRCIR (D), (DS)
(C1)) This expression agrees with Ed.1) in the limit thate— 0.
We again assume the SET island does not maintain coher-
ence, as expressed in Ef\4), and we then can solve Eq.
where againD[A]JB=ABA'-3(ATAB+BATA). This forms a  (D5) for po(t) and p;(t).
generalization of the results of Wisemanal® to the situ- The most important quantity to derive from this master
ation where the measurement Hamiltonityg in their no-  equation is the mixing time. By taking the Laplace transform
tation) does not commute with the free Hamiltonian of the of Eq. (D5), we find poles at 0, —Be?/2(5+A)?, —y/2,
system(H, in their notation. Equation(C11) shows the im- —3y/2 and —2. All but the second of these poles appear as
portance of the Fourier decomposition of the system operatamates in the solution for the symmetric case, E&8). The
B, (t)—the Fourier components d,(t), and their adjoint, second pole is very small, and corresponds to the mixing rate
form the Lindblad operators in the master equation, and it isnduced by the asymmetry in the SET island placement. For
through these components that the DWS interacts with thémes t<t;,=2(5+A)?/3ye?, the solution to the master

R() =2 (nfi(wm + % f(0m)DIPLEIIR (1)

SET island. equation is essentially the same as &#8). On a time-scale
Returning to the Schrodinger picture, the master equatiobh~ t,,;x, the diagonal elements also decay, so that the steady-
is given by state solution in the ordered bagis-), |—)} is
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é degree of mixing in the singlet subspace induced by the fact
2(5+A)* 0 that the singlet is not an eigenstate of the dynamics. Finally,
Po= 4 and we provide a derivation of the jump operators for an asym-
€ metrically place SET.
2(5+A)*
€ __ € 1. Lindblad operators
(6+A)? (6+4)
P1— € 62 ’ (D6) i . ) i .
_ 1- The device Hamlltonla_n is glven_by E@5) so we can
(6+A) (5+A)? use the results of Appendix C to derive a master equation for

the dynamics of the DWS and SET island coupled to the

leads. The crucial quantity to evaluateBgt), whose defi-

h|’ﬁtion is given in Eq(C6). Then identifying the Fourier com-

ponents,P,, of B,(t), as in Eq.(C9), provides the operators

that appear in the Lindblad terms of the master equation, Eq.

C11).

APPENDIX E: MASTER EQUATION FOR A DOUBLY ( V\/)e assume thatl and a are relatively large energies,

OCCUPIED DWS while €, § and A are relatively small. In fact, for the sym-

In this Appendix we derive a master equation for the dy-metric caseg=0, and we will investigate this “ideal” situa-
namics of the singlet-triplet measurement scheme. Initiallyiion first. Clearly, if e=0, then the dynamics is even more
we consider a symmetrically placed SET island. We first desestricted, so that the measurement Hamiltoniafs i
rive the Lindblad operators that appear in the master equa® Hpeas ONly couples the spatially symmetric stat8s and
tion, and give a physical interpretation to the discrete speciD.), [see Eq.(24)], so we may restrict our analysis to the
trum, {wy,}, that appears in their derivation. We then give a2-dimensional subspace spanned by the ordered basis
quantum trajector’s analysis of the measured currents in th8S),|D.)}. In this restricted basis we may decompdét)
triplet subspaces and singlet subspaces. Next we compute thgo four Fourier components:

where we have kept only the highest order terna for each
matrix element. This steady-state solution corresponds to t
DWS being(almos} in its ground state,—), with the SET in
the closed state, occupied by a single electron.

S+A A
0O O 1 - U 0 G 0 )
{SDu}(p) = dnd| iU i[(6%+250)UTt —i[(82+250)UTt -iut 0
B W)= €Y & 0 +é A +e 54 A +e uil, (ED
U _U 0 0 1 00

where for simplicity(and without loss of generalityve have  the coefficients of the Fermi factors in the master equation,
seta=-w, S0 that a common overall factor ef®*“0t con-  Eq. (C11).

veniently vanishes. Also, we have discarded terms of order We interpret the energidsw,, as the change in energy of
&%, 6A and A? appearing in the matrices, since these areelectrons tunneling between the SET island and a lead. Thus,
smaII, but they are retained in exponents where they are thﬁncew3’6‘7’8: 0, the Corresponding process@\glsjysare as-

lowest order terms that lift the degeneracy of the We will  sociated with elastic tunneling between the lead and the SET.
refer to the operators appearing in Eg1) asPy, P,, P4, and  This can only induce dephasing of the DWS, since no energy
Ps, respectively. For completeness, is exchanged between the leads and the DWS. These elastic

By(t) = Bffw(t) +d9(Py+Pg+ P, +Pg), (E2)  Processes therefore do not induce mixing in the DWS, and
are the origin of the QND projective nature of the measure-
where P3=|D_XD_|, Ps=|T;;XTy;|, P7=|T; XT;;| and P;  ment in the triplet subspace.
=|T,;XT,,|. This decomposition oBy(t) shows that there are  Converselyw, ,<0, SOP; , correspond to inelastic lead-
eight Lindblad operators?,, ... ,Ps. SET tunneling processes whigfain an energyfiw, . This
The frequenciesw,,, associated with the measurementadditional energy in the lead is provided by the electron-pair
process, are given by g 7 =0, w;=—w,=(?+25A)/U and  in the DWS whichlosesenergy. Similarly, processeB, s
ws=—w;=U (Where, again, we have sat-w; otherwise correspond to lead electrons losing energy as the DWS be-
we have an overall offset oi+w, to our energy scaje  comes excited. We therefore expect that there will be some
These energies are shown relative to the lead chemical poreasurement-induced energy relaxation associated with the
tentials, u; and u,, later in Fig. %a). This choice determines measurement of a singlet state.
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We note in passing that these elastic and inelastic proeigenstates of the evolution operators, so we may consider
cesses in the detector have counterparts in the measureméné dynamics separately in each of the uncoupled, 1D sub-
of a DWS by a point contact detector, as described irspaces{|T”>},{Tu>},{|TH>},{|D_>}. In these subspaces the
Ref. 13. Hubbard Hamiltonian is proportional to the identity so the

reduced master equations for each subspace are of the form

2. Master equation in singlet subspace po= % JIPlpr = nA[Plpo, (E4)

The singlet and triplet subspaces are not mixed at all by p1=nPleo =y APlor, ES
the dynamics, so we derive a master equation for the state @fhereP is the projector onto the subspace, e.g. for the sub-
the DWS and SET in the singlet subspa&s;p,®|0)0|  space{|D_)}, P=|D_XD_|.
+p,®|1)(1/, using the results of Appendix C. In particular,  These reduced master equations depend on only a single
the P, that appear in Eq(E1) form the Lindblad operators in jump operatorP, so the evolution between jumps may be
Eqg.(C11) and thew,, appear as arguments to the Fermi func-written as a pure statézlfns(t»c, ns=0 or 1, governed by the

tions in Eq.(C12), non-Hermitian effective Hamiltonian?,n(ns according to the
. . Schrodinger equatich
po =~ i[Hyutpol + ¥ (J[P4lp1 + T Pslps — A[Pl1po gered
d .
- A[ PE]PO)' a| 'r//ns(t»c == lHnS| l/fns(t»c- (E6)
p1=—i[Hpub+ Hmeasp1l — ¥ (A[P4lp1 + A[Pslp1 The non-Hermitian Hamiltonians for each subspace7dge
. N =-i(y/2)P and H,;=-i(y,/2)P. The solution is simply
= JP1lpo = AP2leo), B3 |y()e=e " yg(0)) and [g(t)c=e "y (0)). The

wherey’ =y +7,, and we have use®[B]p=7[B]p-.A[Blp. jump rate is deter_mined_ by the cumulgtive density function
The steady-state probability for the system to be in the sin(CDF) for the waiting time between jump®, (t;<t)=1
glet state is given by (Sp549=(Sp+pSI9=1-(8 ¥ D] (D) SO Poty<t)=1-e7" and Py(t;<t)=1
+A)2/U2, is very close to unity. Therefore, if the DWS starts ~€ . Thus we have a cycle of electrons hopping onto the
in a singlet state, its state does not change significantly durSET from the left lead at a ratg then hopping off to the
ing the measurement. This further justifies the assertion thdtdht lead at a ratey,. We therefore expect a curreni
the measurement is nearly QND on the singlet subspace. =€(% +% )" to flow through the SET when the DWS is in
The poles of the master equation determine the measuréle triplet subspace, in agreement with above.
ment and relaxation rates. There are poles aty05%/U?, We now turn to the more complicated dynamics in the
—y/12 and —/. The second of these corresponds to energypinglet subspacd|S),|D.)}. To simplify the analysis of this
exchange processes generated by the oper@pmnd P;  system, we will ignore the Lindblad terms dependingRyn
appearing in the Lindblad terms. There is therefore andPs in the master equation, EGE3). This is reasonable
measurement-induced mixing timg,, = u?/ 7/52_ This mix- since these terms a@(8%/U?), which is small. For the re-
ing time is due to the fact that the singlet state is not quite asulting approximate form of EqE3) the dynamics between
eigenstate of eithet o,snor Hy,, The mixing time is very  jumps are governed by effective Hamiltonians for each
long compared to the measurement timel/y’, since§ SET island statens=0,1, with a single jump operator,
<U. The mixing only induces relaxation of the DWS, and soHo=Hpup—i(y'/2)P,P} andH;=H o+ Hmeas1(Y' 1 2) PP
it has very little effect on the singlet state, which is alreadySince there is only a single jump operator associated with
very close to the ground state. We therefore conclude thak[ns, we unravel the master equations as non-Hermitian
this intrinsic mixing is negligible. Schrodinger equations for the pure, conditional, unnormal-
ized, between-jump state—vectorh/xns(t))c:L{ns(t)|gbns(O)),
WhereZ/{ns(t)=e‘”1‘nst.21 During a jump at time , the state of
the system evolves discontinuously according|#a(t’))

—_pf - T (+F)) = -
To analyze the evolution of the measurement more for- P2|'/’°(t7?> and [yo(t7)=Py| ‘/jl(t?»'
To derive an upper bound dg, we calculate the rate at

mally, we unravel the unconditional master equation, Eg. , . X
(C12), and derive the conditional dynamics of quantum tra-Wh'(.:h e_Iectro_ns hop on and Of_f the SET, given tha_t the DWS
tg;Dglns in a singlet state. The jump rate is determined by the

3. SET average currents

jectories. From the unraveling we can provide estimates fo F for the lifetime of the SET state with,=0 or 1 elec-

SET currents. We assume the system may be described - . .
the density matrix given in Eq12), i.e., the SET island does ons, P (ty< t)'l_c<'f/’“s(t) | ‘/’”s(t»C' This quantity depends

not support coherent superpositions of 0 and 1 electrons. W& the state of the DWS immediately after the most recent
may therefore reduce the master equation given in€f2)  jump, |z/;ns(tf7)>, which is not deterministic due to the stochas-
to a pair of master equations fpp and p;. tic nature of the trajectory. However, as discussed in Appen-
The dynamics of the system decouple, depending on thdix E 2, the steady state of the DW&?, is very close to the
state of the DWS. In particular, the triplet states #Dd) are  singlet state sincéSps)=1-(5+A)?/U22t Therefore, for
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FIG. 5. (a) Transition energiesy,, relative to lead Fermi levels,
L t for a symmetrically placed SET island, wheig=-ws=-U, w,
150000 200000 =—w,=—(8*+28A)/U and w367¢0, and(b) for an asymmetri-
cally placed SET island, wher@;=-ws=-U, w,=—(8+28A)/U,
w3=—ws=—2€ and wg 7 g=0.

50000 100000

50

40

To confirm these approximate analytical predictions, we
have performed numerical simulations of the conditional dy-
namics derived from the master equation, &€B), which is
not subject to any of the approximations made in this section.
y In Fig. 4(a)_ we show the project-iod'(S| (1))l immediately

after jumpj for a sample of 200 jumps, assuming parameter
300 400 500 valuesé=A/2=10y'=U/10. In this figure it is evident that

FIG. 4. (a) Projection of the state of the DWS onto the singlet the D\.NS typlcally remal?s .frl]otshe to thedslnglet ISta.te after
state, [(S|y(t)))|, immediately after jumpj for §=A/2=10y every jJump, in agreement with the preceding analysis.
=U/10. (b) Histogram of waiting times between jumps with=0 Furthermore, we plot the distribution of waiting times be-
and(c) with ne=1, for a simulation with 1Hjumps. tween jumps for a simulation of 10000 sequential jumps,

shown in Fig. 4b) for an empty islandns=0) and in Fig.

the purposes of computing the CDF, to very good approxi<{©) fc;]r a:cn OCC“p'ﬁd 'Slsndr;ls g For the parametefrs chor—]
mation, we can make the replacemémgs(tj)>—>|s). The Sen. the figures show that the SET remains empty for a char-

. o . acteristic time of around 100, while the typical occupation
unnormalized, conditional state of the DWS between JUmps; o is around 2800QJ. These times areylfl agreemgnt with

30

20

10

100 200

's then the analytic estimates given above for which
~ - ~ QliU=y/ 121t 75=100/U and ;=28000U.
[¥o(0)e =UolS) ~ € S+ 0an), This analysis establishes that since the DWS remains
close to the singlet state at all times, the measurement is
|I],1(t)>0:ul|s> ~ e(iU-y’A2(5+A)2/2U4)t|S> +0((8+ A)IU), close to an ideal QND measurement.

wheret is measured from the previous jump. It follows that

the CDFs for the jump times ar??o(tj<t)zl—e‘7/t and 4, By (t) for asymmetric DWS
Pl(tj<t)zl—e‘(Az(‘“A)z’U‘lV". These CDFs show that the
lifetime of an empty SET is shorty=1/v', while the life- We now consider the effect of asymmetry in the place-

time of an occupied SET is very long,=U*/A%(5+A)?y'.  ment of the SET island, where# 0. As in Appendix C we
Thus the cycle time for electrons to hop on and off the islandExpressBy(t) in a Fourier decomposition restricted to the
is approximatelyr, D.),|D_)}, which spans thesinglet sub-
SET current when the DWS starts in the singlet statespace The Fourier components of this operator are crucial
is<el/r,. This is much less thany, in agreement with the for deriving the master equation with which to analyze the
heuristic prediction thaits=0. system. We find
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To derive this result, we have assumed fl##A)?/4U < e<U. In the opposite limit(5+A)?/4U> ¢, the effect of asymmetry

is negligible. The energies,, appearing in the exponents above are shown schematically in fy.As described in
Appendix E 1, these energies correspond to the change in energy of an electron as it tunnels between alead and the SET,
gaining or losing energy as it interacts with the DWS.
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