700 research outputs found

    Towards a statistical theory of solid dry friction

    Full text link
    Wearless dry friction of an elastic block of weight N, driven by an external force F over a rigid substrate, is investigated. The slider and substrate surfaces are both microscopically rough, interacting via a repulsive potential that depends on the local overlap. The model reproduces Amontons's laws which state that the friction force is proportional to the normal loading force N and independent of the nominal surface area. In this model, the dynamic friction force decays for large velocities and approaches a finite static friction for small velocities if the surface profiles are self-affine on small length scales.Comment: Latex, 10 pages. Jounal reference adde

    Contact-induced charge contributions to non-local spin transport measurements in Co/MgO/graphene devices

    Full text link
    Recently, it has been shown that oxide barriers in graphene-based non-local spin-valve structures can be the bottleneck for spin transport. The barriers may cause spin dephasing during or right after electrical spin injection which limit spin transport parameters such as the spin lifetime of the whole device. An important task is to evaluate the quality of the oxide barriers of both spin injection and detection contacts in a fabricated device. To address this issue, we discuss the influence of spatially inhomogeneous oxide barriers and especially conducting pinholes within the barrier on the background signal in non-local measurements of graphene/MgO/Co spin-valve devices. By both simulations and reference measurements on devices with non-ferromagnetic electrodes, we demonstrate that the background signal can be caused by inhomogeneous current flow through the oxide barriers. As a main result, we demonstrate the existence of charge accumulation next to the actual spin accumulation signal in non-local voltage measurements, which can be explained by a redistribution of charge carriers by a perpendicular magnetic field similar to the classical Hall effect. Furthermore, we present systematic studies on the phase of the low frequency non-local ac voltage signal which is measured in non-local spin measurements when applying ac lock-in techniques. This phase has so far widely been neglected in the analysis of non-local spin transport. We demonstrate that this phase is another hallmark of the homogeneity of the MgO spin injection and detection barriers. We link backgate dependent changes of the phase to the interplay between the capacitance of the oxide barrier to the quantum capacitance of graphene.Comment: 19 pages, 7 figure

    Absence of non-trivial asymptotic scaling in the Kashchiev model of polynuclear growth

    Full text link
    In this brief comment we show that, contrary to previous claims [Bartelt M C and Evans J W 1993 {\it J.\ Phys.\ A} 26{\bf 26} 2743], the asymptotic behaviour of the Kashchiev model of polynuclear growth is trivial in all spatial dimensions, and therefore lies outside the Kardar-Parisi-Zhang universality class.Comment: 3 pages, 4 postscript figures, uses eps

    Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature

    Full text link
    We present a new fabrication method of graphene spin-valve devices which yields enhanced spin and charge transport properties by improving both the electrode-to-graphene and graphene-to-substrate interface. First, we prepare Co/MgO spin injection electrodes onto Si++^{++}/SiO2_2. Thereafter, we mechanically transfer a graphene-hBN heterostructure onto the prepatterned electrodes. We show that room temperature spin transport in single-, bi- and trilayer graphene devices exhibit nanosecond spin lifetimes with spin diffusion lengths reaching 10μ\mum combined with carrier mobilities exceeding 20,000 cm2^2/Vs.Comment: 15 pages, 5 figure

    Pion form factor in large NcN_c QCD

    Get PDF
    The electromagnetic form factor of the pion is obtained using a particular realization of QCD in the large NcN_c limit, which sums up the infinite number of zero-width resonances to yield an Euler's Beta function of the Veneziano type. This form factor agrees with space-like data much better than single rho-meson dominance. A simple unitarization ansatz is illustrated, and the resulting vector spectral function in the time-like region is shown to be in reasonable agreement with the ALEPH data from threshold up to about 1.3 GeV2{GeV}^2.Comment: Plain Latex, 9 pages, 2 figure

    Instanton Contribution to the Pion Electro-Magnetic Formfactor at Q^2 > 1 GeV^2

    Get PDF
    We study the effects of instantons on the charged pion electro-magnetic formfactor at intermediate momenta. In the Single Instanton Approximation (SIA), we predict the pion formfactor in the kinematic region Q^2=2-15 GeV^2. By developing the calculation in a mixed time-momentum representation, it is possible to maximally reduce the model dependence and to calculate the formfactor directly. We find the intriguing result that the SIA calculation coincides with the vector dominance monopole form, up to surprisingly high momentum transfer Q^2~10 GeV^2. This suggests that vector dominance for the pion holds beyond low energy nuclear physics.Comment: 8 pages, 5 figures, minor revision

    Collective Behavior of Asperities in Dry Friction at Small Velocities

    Full text link
    We investigate a simple model of dry friction based on extremal dynamics of asperities. At small velocities, correlations develop between the asperities, whose range becomes infinite in the limit of infinitely slow driving, where the system is self-organized critical. This collective phenomenon leads to effective aging of the asperities and results in velocity dependence of the friction force in the form F1exp(1/v)F\sim 1- \exp(-1/v).Comment: 7 pages, 8 figures, revtex, submitted to Phys. Rev.

    Light-Front Model of Transition Form-Factors in Heavy Meson Decay

    Full text link
    Electroweak transition form factors of heavy meson decays are important ingredients in the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements from experimental data. In this work, within a light-front framework, we calculate electroweak transition form factor for the semileptonic decay of DD mesons into a pion or a kaon. The model results underestimate in both cases the new data of CLEO for the larger momentum transfers accessible in the experiment. We discuss possible reasons for that in order to improve the model.Comment: Paper with 5 pages and 2 eps figures. To appear to Nuclear Physics B. Talk at Light Cone 2009: Relativistic Hadronic and Particle Physics (LC 2009), Sao Jose dos Campos, S.P, Brazil, 8-13 Jul 2009

    Pion structure from improved lattice QCD: form factor and charge radius at low masses

    Full text link
    The charge form factor of the pion is calculated in lattice QCD. The non-perturbatively improved Sheikholeslami-Wohlert action is used together with the O(a)\mathcal{O}(a) improved vector current. Other choices for the current are examined. The form factor is extracted for pion masses from 970 MeV down to 360 MeV and for momentum transfers Q22GeV2Q^2 \leq 2 \mathrm{GeV}^2. The mean square charge radius is extracted, compared to previous determinations and its extrapolation to lower masses discussed.Comment: 12 pages REVTeX, 15 figures. Designation of currents clarified. Details concerning extraction of parameters added. Version accepted by Phys. Rev.

    Master-equation approach to the study of phase-change processes in data storage media

    Get PDF
    We study the dynamics of crystallization in phase-change materials using a master-equation approach in which the state of the crystallizing material is described by a cluster size distribution function. A model is developed using the thermodynamics of the processes involved and representing the clusters of size two and greater as a continuum but clusters of size one (monomers) as a separate equation. We present some partial analytical results for the isothermal case and for large cluster sizes, but principally we use numerical simulations to investigate the model. We obtain results that are in good agreement with experimental data and the model appears to be useful for the fast simulation of reading and writing processes in phase-change optical and electrical memories
    corecore