289 research outputs found

    Analyzing the trophic link between the mesopelagic microbial loop and zooplankton from observed depth profiles of bacteria and protozoa

    Get PDF
    It is widely recognized that organic carbon exported to the ocean aphotic layer is significantly consumed by heterotrophic organisms such as bacteria and zooplankton in the mesopelagic layer. However, very little is known for the trophic link between bacteria and zooplankton or the function of the microbial loop in this layer. In the northwestern Mediterranean, recent studies have shown that viruses, bacteria, heterotrophic nanoflagellates, and ciliates distribute down to 2000 m with group-specific depth-dependent decreases, and that bacterial production decreases with depth down to 1000 m. Here we show that such data can be analyzed using a simple steady-state food chain model to quantify the carbon flow from bacteria to zooplankton over the mesopelagic layer. The model indicates that bacterial mortality by viruses is similar to or 1.5 times greater than that by heterotrophic nanoflagellates, and that heterotrophic nanoflagellates transfer little of bacterial production to higher trophic levels

    Mechanisms Generating Dichotomies in the Life Strategies of Heterotrophic Marine Prokaryotes

    Get PDF
    Understanding the mechanisms that generate and maintain diversity in marine prokaryotic communities is one of the main challenges for contemporary marine microbiology. We here review how observational, experimental, and theoretical evidence converge on the conclusion that the marine pelagic community of heterotrophic prokaryotes consists of organisms with two main types of life strategies. We illustrate this dichotomy by SAR11 and Vibrio spp. as typical representatives of the two strategies. A theory for life strategy dichotomy exists in classical r/K-selection. We here discuss an additional dichotomy introduced by what we term S/L-selection (for Small and Large, respectively). While r/K-selection focuses on the role of environmental disturbances, steady-state models suggest that high abundance at species level should be closely related to a low trade-off between competition and defense. We summarize literature indicating that the high availability of organic C is an essential environmental factor favoring Vibrio spp. and suggest that the essence of the generalized L-strategy is to reduce the competition-predator defense trade-off by using non-limiting organic C to increase size. The “streamlining” theory that has been suggested for the S-strategist SAR11 proposes the opposite: that low trade-off is achieved by a reduction in size. We show how this apparent contradiction disappears when the basic assumptions of diffusion-limited uptake are considered. We propose a classification scheme that combines S/L and r/K-selection using the two dimensions of organic C availability and environmental disturbance. As organic C in terrestrial runoff and size of the oligotrophic oceanic gyres are both changing, habitat size for both S- and L-strategists are affected by global change. A theory capturing the main aspects of prokaryote life strategies is therefore crucial for predicting responses of the marine microbial food web to climate change and other anthropogenic influences.publishedVersio

    Explaining microbial population genomics through phage predation

    Get PDF
    The remarkable diversity of genes within the pool of prokaryotic genomes belonging to the same species or pan-genome is difficult to reconcile with the widely accepted paradigm which asserts that periodic selection within bacterial populations would regularly purge genomic diversity by clonal replacement. Recent evidence from metagenomics indicates that even within a single sample a large diversity of genomes can be present for a single species. We have found that much of the differential gene content affects regions that are potential phage recognition targets. We therefore propose the operation of Constant-Diversity dynamics in which the diversity of prokaryotic populations is preserved by phage predation. We provide supporting evidence for this model from metagenomics, mathematical analysis and computer simulations. Periodic selection and phage predation dynamics are not mutually exclusive; we compare their predictions to indicate under which ecological circumstances each dynamics could predominate

    Preface "Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study"

    Get PDF
    The growing evidence of potential biological impacts of ocean acidification affirms that this global change phenomenon may pose a serious threat to marine organisms and ecosystems. Whilst ocean acidification will occur everywhere, it will happen more rapidly in some regions than in others. Due to the high CO2 solubility in the cold surface waters of high-latitude seas, these areas are expected to experience the strongest changes in seawater chemistry due to ocean acidification. This will be most pronounced in the Arctic Ocean. If atmospheric pCO2 levels continue to rise at current rates, about 10% of the Arctic surface waters will be corrosive for aragonite by 2018 (Steinacher et al., 2009). By 2050 one-half of the Arctic Ocean will be sub-saturated with respect to aragonite. By the end of this century corrosive conditions are projected to have spread over the entire Arctic Ocean (Steinacher et al., 2009). In view of these rapid changes in seawater chemistry, marine organisms and ecosystems in the Arctic are considered particularly vulnerable to ocean acidification. With this in mind, the European Project on Ocean Acidification (EPOCA) chose the Arctic Ocean as one of its focal areas of research

    Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO<sub>2</sub> levels in a mesocosm study

    No full text
    International audienceAvailability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 ?atm: 1×CO2; 750 ?atm: 2×CO2; 1050 ?atm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 ?m fraction was greater in the 3×CO2 mesocosm during the first 6?10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) but not a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Although specific phosphate affinity and specific APA tended to be higher in 3×CO2 than in 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, no statistical differences were found. Responses of specific glucose affinity for bacteria were similar at the three different pCO2 levels. Measured specific glucose affinities were consistently much lower than the theoretical maximum predicted from the diffusion-limited model, suggesting that bacterial growth was not limited by the availability of labile dissolved organic carbon. These results suggest that availability of phosphate and glucose was similar at the three different pCO2 levels

    Detection of limiting factors for bacterial activity using protease activity

    Get PDF
    Responses in protease activity, caused by adding nutrients to batch cultures of a Vibrio sp., grown to equilibria in a chemostat system at 5 °C with C, N or P-limited media, was measured after O, 6 - 8 and 24 C±) hrs. Addition of the limiting nutrient gave the largest response in activity, due to an increase in bacterial numbers. Reduction in activity per cell was, however, observed in some cases. In field samples from the Skagerak, clear responses within 24 hrs were either absent or found when both C, N and P-sources were added. In the field samples, less changes were found in activity per cell. At three coastal stations, detectable responses were found to additions of P04 3- alone, or in some combinations. When measured, leucine incorporation gave a response pattern to P04 3- additions similar to that of protease activity

    Competition for inorganic and organic forms of nitrogen and phosphorous between phytoplankton and bacteria during an <i>Emiliania huxleyi</i> spring bloom

    Get PDF
    Using <sup>15</sup>N and <sup>33</sup>P, we measured the turnover of organic and inorganic nitrogen (N) and phosphorus (P) substrates, and the partitioning of N and P from these sources into two size fractions of marine osmotrophs during the course of a phytoplankton bloom in a nutrient manipulated mesocosm. The larger size fraction (&gt;0.8 μm), mainly consisting of the coccolithophorid <i>Emiliania huxleyi</i>, but also including an increasing amount of large particle-associated bacteria as the bloom proceeded, dominated uptake of the inorganic forms NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>&minus;</sup>, and PO<sub>4</sub><sup>3&minus;</sup>. The uptake of N from leucine, and P from ATP and dissolved DNA, was initially dominated by the 0.8&ndash;0.2 μm size fraction, but shifted towards dominance by the &gt;0.8 μm size fraction as the system turned to an increasing degree of N-deficiency. Normalizing uptake to biomass of phytoplankton and heterotrophic bacteria revealed that organisms in the 0.8&ndash;0.2 μm size fraction had higher specific affinity for leucine-N than those in the &gt;0.8 μm size fraction when N was deficient, whereas the opposite was the case for NH<sub>4</sub><sup>+</sup>. There was no such difference regarding the specific affinity for P substrates. Since heterotrophic bacteria seem to acquire N from organic compounds like leucine more efficiently than phytoplankton, our results suggest different structuring of the microbial food chain in N-limited relative to P-limited environments

    Winter−spring transition in the subarctic Atlantic: microbial response to deep mixing and pre-bloom production

    Get PDF
    In temperate, subpolar and polar marine systems, the classical perception is that diatoms initiate the spring bloom and thereby mark the beginning of the productive season. Contrary to this view, we document an active microbial food web dominated by pico- and nanoplankton prior to the diatom bloom, a period with excess nutrients and deep convection of the water column. During repeated visits to stations in the deep Iceland and Norwegian basins and the shallow Shetland Shelf (26 March to 29 April 2012), we investigated the succession and dynamics of photosynthetic and heterotrophic microorganisms. We observed that the early phytoplankton production was followed by a decrease in the carbon:nitrogen ratio of the dissolved organic matter in the deep mixed stations, an increase in heterotrophic prokaryote (bacteria) abundance and activity (indicated by the high nucleic acid:low nucleic acid bacteria ratio), and an increase in abundance and size of heterotrophic protists. The major chl a contribution in the early winter-spring transition was found in the fraction 50 µm) were stimulated by deep mixing later in the period, while picophytoplankton were unaffected by mixing; both physical and biological reasons for this development are discussed herein

    Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels in a mesocosm study

    Get PDF
    Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 700 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6–10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) rather than a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Specific phosphate affinity and specific APA tended to be higher in the 3×CO2 than in the 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, although no statistical differences were found. Glucose turnover time was correlated significantly and negatively with bacterial abundance and production but not with the bulk DOC concentration. This suggests that even though constituting a small fraction of the bulk DOC, glucose was an important component of labile DOC for bacteria. Specific glucose affinity of bacteria behaved similarly at the three different pCO2 levels with measured specific glucose affinities being consistently much lower than the theoretical maximum predicted from the diffusion-limited model. This suggests that bacterial growth was not severely limited by the glucose availability. Hence, it seems that the lower availability of inorganic nutrients after the phytoplankton bloom reduced the bacterial capacity to consume labile DOC in the upper mixed layer of the stratified mesocosms
    corecore