707 research outputs found
Context Dependence, MOPs,WHIMs and procedures Recanati and Kaplan on Cognitive Aspects in Semantics
After presenting Kripke’s criticism to Frege’s ideas on context dependence of thoughts, I present two recent attempts of considering cognitive aspects of context dependent expressions inside a truth conditional pragmatics or semantics: Recanati’s non-descriptive modes of presentation (MOPs) and Kaplan’s ways of having in mind (WHIMs). After analysing the two attempts and verifying which answers they should give to the problem discussed by Kripke, I suggest a possible interpretation of these attempts: to insert a procedural or algorithmic level in semantic representations of indexicals. That a function may be computed by different procedures might suggest new possibilities of integrating contextual cognitive aspects in model theoretic semanti
The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment
The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingly, harmonization of aerosol sources has only a small impact on the simulated diversity for aerosol burden, and consequently optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols) and parameterizations of aerosol microphysics (e.g. the split between deposition pathways) and to a lesser extent on the spatial and temporal distributions of the (precursor) emissions.
The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversity for these two species was caused by few outliers. The experiment also indicated that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences.
These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters) in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies
Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): reference simulation
Wildland fires in boreal regions have the potential to initiate deep convection, so-called pyro-convection, due to their release of sensible heat. Under favorable atmospheric conditions, large fires can result in pyro-convection that transports the emissions into the upper troposphere and the lower stratosphere. Here, we present three-dimensional model simulations of the injection of fire emissions into the lower stratosphere by pyro-convection. These model simulations are constrained and evaluated with observations obtained from the Chisholm fire in Alberta, Canada, in 2001. The active tracer high resolution atmospheric model (ATHAM) is initialized with observations obtained by radiosonde. Information on the fire forcing is obtained from ground-based observations of the mass and moisture of the burned fuel. Based on radar observations, the pyro-convection reached an altitude of about 13 km, well above the tropopause, which was located at about 11.2 km. The model simulation yields a similarly strong convection with an overshoot of the convection above the tropopause. The main outflow from the pyro-convection occurs at about 10.6 km, but a significant fraction (about 8%) of the emitted mass of the smoke aerosol is transported above the tropopause. In contrast to regular convection, the region with maximum updraft velocity in the pyro-convection is located close to the surface above the fire. This results in high updraft velocities >10 m s<sup>−1</sup> at cloud base. The temperature anomaly in the plume decreases rapidly with height from values above 50 K at the fire to about 5 K at about 3000 m above the fire. While the sensible heat released from the fire is responsible for the initiation of convection in the model, the release of latent heat from condensation and freezing dominates the overall energy budget. Emissions of water vapor from the fire do not significantly contribute to the energy budget of the convection
Self-organized Te redistribution during driven reconnection processes in high-temperature plasmas
Two-dimensional (2D) images of electron temperature fluctuations with high temporal and spatial resolution were employed to study the sawtooth oscillation in Toroidal EXperiment for Technology Oriented Research [S. S. Abdallaev et al., Nucl. Fusion 43, 299 (2003)] tokamak plasmas. The new findings are: (1) 2D images revealed that the reconnection is localized and permitted the determination of the physical dimensions of the reconnection zone in the poloidal and toroidal planes. (2) The combination of a pressure bulge due to finite pressure effects or a kink instability accompanied with a sharp pressure point leads to an "X-point" reconnection process. (3) Reconnection can take place anywhere along the q similar to 1 rational magnetic surface (both high- and low-field sides). (4) Heat flow from the core to the outside of the inversion radius during the reconnection time is through the finite opening on the poloidal and toroidal planes and the flow is highly collective. These new findings are compared with the characteristics of various theoretical models and experimental results for the study of the sawtooth oscillation in tokamak plasmas. (c) 2006 American Institute of Physics
Emissions of primary aerosol and precursor gases in the year 2000 and 1750 prescribed data-sets for AeroCom.
Inventories for global aerosol and aerosol precursor emissions have been collected (based on published inventories and published simulations), assessed and prepared for the year 2000 (present-day conditions) and for the year 1750 (pre-industrial conditions). These global datasets establish a comprehensive source for emission input to global modeling, when simulating the aerosol impact on climate with state-of-the-art aerosol component modules. As these modules stratify aerosol into dust, sea-salt, sulfate, organic matter and soot, for all these aerosol types global fields on emission strength and recommendations for injection altitude and particulate size are provided. Temporal resolution varies between daily (dust and sea-salt), monthly (wild-land fires) and annual (all other emissions). These datasets benchmark aerosol emissions according to the knowledge in the year 2004. They are intended to serve as systematic constraints in sensitivity studies of the AeroCom initiative, which seeks to quantify (actual) uncertainties in aerosol global modeling
The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel
This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO2 by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5104 min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO2 exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method
Surface modification of Ti-6Al-4V alloy for biomineralization and specific biological response: Part II, Alkaline phosphatase grafting
Titanium and its alloys are the most widespread
materials for the realization of orthopaedic and dental implants due to their good mechanical properties and biocompatibility.
Surface functionalization of biomaterials
aimed to improve and quicken implant integration and tissue regeneration is an active research field. The opportunity
to confer biological activity (ability to directly stimulate cells with proper biological signals) to the Ti6Al4 V alloy, previously modified to be bioactive from
the inorganic point of view (apatite precipitation), was explored in this research work. The alkaline phosphatase
(ALP) enzyme was grafted to metal surface via tresyl chloride activation, maintaining its activity. A synergistic effect between biological functionalization and inorganic
bioactivity was observed
Renal artery stenosis-when to screen, what to stent?
Renal artery stensosis (RAS) continues to be a problem for clinicians, with no clear consensus on how to investigate and assess the clinical significance of stenotic lesions and manage the findings. RAS caused by fibromuscular dysplasia is probably commoner than previously appreciated, should be actively looked for in younger hypertensive patients and can be managed successfully with angioplasty. Atheromatous RAS is associated with increased incidence of cardiovascular events and increased cardiovascular mortality, and is likely to be seen with increasing frequency. Evidence from large clinical trials has led clinicians away from recommending interventional revascularisation towards aggressive medical management. There is now interest in looking more closely at patient selection for intervention, with focus on intervening only in patients with the highest-risk presentations such as flash pulmonary oedema, rapidly declining renal function and severe resistant hypertension. The potential benefits in terms of improving hard cardiovascular outcomes may outweigh the risks of intervention in this group, and further research is needed
- …
