106 research outputs found

    Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX

    Get PDF
    The hexameric AAA+ ring of Escherichia coli ClpX, an ATP-dependent machine for protein unfolding and translocation, functions with the ClpP peptidase to degrade target substrates. For efficient function, ClpX subunits must switch between nucleotide-loadable (L) and nucleotide-unloadable (U) conformations, but the roles of switching are uncertain. Moreover, it is controversial whether working AAA+-ring enzymes assume symmetric or asymmetric conformations. Here, we show that a covalent ClpX ring with one subunit locked in the U conformation catalyzes robust ATP hydrolysis, with each unlocked subunit able to bind and hydrolyze ATP, albeit with highly asymmetric position-specific affinities. Preventing U↔L interconversion in one subunit alters the cooperativity of ATP hydrolysis and reduces the efficiency of substrate binding, unfolding and degradation, showing that conformational switching enhances multiple aspects of wild-type ClpX function. These results support an asymmetric and probabilistic model of AAA+-ring activity.National Institutes of Health (U.S.) (Grant GM-101988)Massachusetts Institute of Technology (Poitras Predoctoral Fellowship

    The gating mechanism in cyclic nucleotide-gated ion channels

    Get PDF
    Cyclic nucleotide-gated (CNG) channels mediate transduction in several sensory neurons. These channels use the free energy of CNs' binding to open the pore, a process referred to as gating. CNG channels belong to the superfamily of voltage-gated channels, where the motion of the \uce\ub1-helix S6 controls gating in most of its members. To date, only the open, cGMP-bound, structure of a CNG channel has been determined at atomic resolution, which is inadequate to determine the molecular events underlying gating. By using electrophysiology, site-directed mutagenesis, chemical modification, and Single Molecule Force Spectroscopy, we demonstrate that opening of CNGA1 channels is initiated by the formation of salt bridges between residues in the C-linker and S5 helix. These events trigger conformational changes of the \uce\ub1-helix S5, transmitted to the P-helix and leading to channel opening. Therefore, the superfamily of voltage-gated channels shares a similar molecular architecture but has evolved divergent gating mechanisms

    Rab6 and Rab11 Regulate Chlamydia trachomatis Development and Golgin-84-Dependent Golgi Fragmentation

    Get PDF
    Many intracellular pathogens that replicate in special membrane bound compartments exploit cellular trafficking pathways by targeting small GTPases, including Rab proteins. Members of the Chlamydiaceae recruit a subset of Rab proteins to their inclusions, but the significance of these interactions is uncertain. Using RNA interference, we identified Rab6 and Rab11 as important regulators of Chlamydia infections. Depletion of either Rab6 or Rab11, but not the other Rab proteins tested, decreased the formation of infectious particles. We further examined the interplay between these Rab proteins and the Golgi matrix components golgin-84 and p115 with regard to Chlamydia-induced Golgi fragmentation. Silencing of the Rab proteins blocked Chlamydia-induced and golgin-84 knockdown-stimulated Golgi disruption, whereas Golgi fragmentation was unaffected in p115 depleted cells. Interestingly, p115-induced Golgi fragmentation could rescue Chlamydia propagation in Rab6 and Rab11 knockdown cells. Furthermore, transport of nutrients to Chlamydia, as monitored by BODIPY-Ceramide, was inhibited by Rab6 and Rab11 knockdown. Taken together, our results demonstrate that Rab6 and Rab11 are key regulators of Golgi stability and further support the notion that Chlamydia subverts Golgi structure to enhance its intracellular development

    Clara Cell 10-kDa Protein Gene Transfection Inhibits NF-κB Activity in Airway Epithelial Cells

    Get PDF
    Clara cell 10-kDa protein (CC10) is a multifunctional protein with anti-inflammatory and immunomodulatory effects. Induction of CC10 expression by gene transfection may possess potential therapeutic effect. Nuclear factor κB (NF-κB) plays a key role in the inflammatory processes of airway diseases.To investigate potential therapeutic effect of CC10 gene transfection in controlling airway inflammation and the underlying intracellular mechanisms, in this study, we constructed CC10 plasmid and transfected it into bronchial epithelial cell line BEAS-2B cells and CC10 knockout mice. In BEAS-2B cells, CC10's effect on interleukin (IL)-1β induced IL-8 expression was explored by means of RT-PCR and ELISA and its effect on NF-κB classical signaling pathway was studied by luciferase reporter, western blot, and immunoprecipitation assay. The effect of endogenous CC10 on IL-1β evoked IL-8 expression was studied by means of nasal explant culture. In mice, CC10's effect on IL-1β induced IL-8 and nuclear p65 expression was examined by immunohistochemistry. First, we found that the CC10 gene transfer could inhibit IL-1β induced IL-8 expression in BEAS-2B cells. Furthermore, we found that CC10 repressed IL-1β induced NF-κB activation by inhibiting the phosphorylation of IκB-α but not IκB kinase-α/β in BEAS-2B cells. Nevertheless, we did not observe a direct interaction between CC10 and p65 subunit in BEAS-2B cells. In nasal explant culture, we found that IL-1β induced IL-8 expression was inversely correlated with CC10 levels in human sinonasal mucosa. In vivo study revealed that CC10 gene transfer could attenuate the increase of IL-8 and nuclear p65 staining in nasal epithelial cells in CC10 knockout mice evoked by IL-1β administration.These results indicate that CC10 gene transfer may inhibit airway inflammation through suppressing the activation of NF-κB, which may provide us a new consideration in the therapy of airway inflammation

    Multiple sclerosis drug FTY-720 toxicity is mediated by the heterotypic fusion of organelles in neuroendocrine cells

    Get PDF
    FTY-720 (Fingolimod) was one of the first compounds authorized for the treatment of multiple sclerosis. Among its other activities, this sphingosine analogue enhances exocytosis in neuroendocrine chromaffin cells, altering the quantal release of catecholamines. Surprisingly, the size of chromaffin granules is reduced within few minutes of treatment, a process that is paralleled by the homotypic fusion of granules and their heterotypic fusion with mitochondria, as witnessed by dynamic confocal and TIRF microscopy. Electron microscopy studies support these observations, revealing the fusion of several vesicles with individual mitochondria to form large, round mixed organelles. This cross-fusion is SNARE-dependent, being partially prevented by the expression of an inactive form of SNAP-25. Fused mitochondria exhibit an altered redox potential, which dramatically enhances cell death. Therefore, the cross-fusion of intracellular organelles appears to be a new mechanism to be borne in mind when considering the effect of FTY-720 on the survival of neuroendocrine cells

    Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis

    Get PDF
    BACKGROUND Two phase 3 trials (UNCOVER-2 and UNCOVER-3) showed that at 12 weeks of treatment, ixekizumab, a monoclonal antibody against interleukin-17A, was superior to placebo and etanercept in the treatment of moderate-to-severe psoriasis. We report the 60-week data from the UNCOVER-2 and UNCOVER-3 trials, as well as 12-week and 60-week data from a third phase 3 trial, UNCOVER-1. METHODS We randomly assigned 1296 patients in the UNCOVER-1 trial, 1224 patients in the UNCOVER-2 trial, and 1346 patients in the UNCOVER-3 trial to receive subcutaneous injections of placebo (placebo group), 80 mg of ixekizumab every 2 weeks after a starting dose of 160 mg (2-wk dosing group), or 80 mg of ixekizumab every 4 weeks after a starting dose of 160 mg (4-wk dosing group). Additional cohorts in the UNCOVER-2 and UNCOVER-3 trials were randomly assigned to receive 50 mg of etanercept twice weekly. At week 12 in the UNCOVER-3 trial, the patients entered a long-term extension period during which they received 80 mg of ixekizumab every 4 weeks through week 60; at week 12 in the UNCOVER-1 and UNCOVER-2 trials, the patients who had a response to ixekizumab (defined as a static Physicians Global Assessment [sPGA] score of 0 [clear] or 1 [minimal psoriasis]) were randomly reassigned to receive placebo, 80 mg of ixekizumab every 4 weeks, or 80 mg of ixekizumab every 12 weeks through week 60. Coprimary end points were the percentage of patients who had a score on the sPGA of 0 or 1 and a 75% or greater reduction from baseline in Psoriasis Area and Severity Index (PASI 75) at week 12. RESULTS In the UNCOVER-1 trial, at week 12, the patients had better responses to ixekizumab than to placebo; in the 2-wk dosing group, 81.8% had an sPGA score of 0 or 1 and 89.1% had a PASI 75 response; in the 4-wk dosing group, the respective rates were 76.4% and 82.6%; and in the placebo group, the rates were 3.2% and 3.9% (P<0.001 for all comparisons of ixekizumab with placebo). In the UNCOVER-1 and UNCOVER-2 trials, among the patients who were randomly reassigned at week 12 to receive 80 mg of ixekizumab every 4 weeks, 80 mg of ixekizumab every 12 weeks, or placebo, an sPGA score of 0 or 1 was maintained by 73.8%, 39.0%, and 7.0% of the patients, respectively. Patients in the UNCOVER-3 trial received continuous treatment of ixekizumab from weeks 0 through 60, and at week 60, at least 73% had an sPGA score of 0 or 1 and at least 80% had a PASI 75 response. Adverse events reported during ixekizumab use included neutropenia, candidal infections, and inflammatory bowel disease. CONCLUSIONS In three phase 3 trials involving patients with psoriasis, ixekizumab was effective through 60 weeks of treatment. As with any treatment, the benefits need to be weighed against the risks of adverse events. The efficacy and safety of ixekizumab beyond 60 weeks of treatment are not yet known

    The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins.

    Get PDF
    Chlamydiae are obligate intracellular parasites which multiply within infected cells in a membrane-bound structure termed an inclusion. Newly internalized bacteria are surrounded by host plasma membrane; however, the source of membrane for the expansion of the inclusion is unknown. To determine if the membrane for the mature inclusion was derived by fusion with cellular organelles, we stained infected cells with fluorescent or electron-dense markers specific for organelles and examined inclusions for those markers. We observed no evidence for the presence of endoplasmic reticulum, Golgi, late endosomal, or lysosomal proteins in the inclusion. These data suggest that the expansion of the inclusion membrane, beginning 24 h postinoculation, does not occur by the addition of host proteins resulting from either de novo host synthesis or by fusion with preexisting membranes. To determine the source of the expanding inclusion membrane, antibodies were produced against isolated membranes from Chlamydia-infected mouse cells. The antibodies were demonstrated to be solely against Chlamydia-specified proteins by both immunoprecipitation of [35S]methionine-labeled extracts and Western blotting (immunoblotting). Techniques were used to semipermeabilize Chlamydia-infected cells without disrupting the permeability of the inclusion, allowing antibodies access to the outer surface of the inclusion membrane. Immunofluorescent staining demonstrated a ring-like fluorescence around inclusions in semipermeabilized cells, whereas Triton X-100-permeabilized cells showed staining throughout the inclusion. These studies demonstrate that the inclusion membrane is made up, in part, of Chlamydia-specified proteins and not of existing host membrane proteins
    • …
    corecore