66 research outputs found

    Tailored implementation of national recommendations on fall prevention among older adults in municipalities in Norway (FALLPREVENT trial): a study protocol for a cluster-randomised trial

    Get PDF
    Background: Despite substantial research evidence indicating the effectiveness of a range of interventions to pre- vent falls, uptake into routine clinical practice has been limited by several implementation challenges. The complexity of fall prevention in municipality health care underlines the importance of flexible implementation strategies tailored both to general determinants of fall prevention and to local contexts. This cluster-randomised trial (RCT) investigates the effectiveness of a tailored intervention to implement national recommendations on fall prevention among older home-dwelling adults compared to usual practice on adherence to the recommendations in health professionals.Methods: Twenty-five municipalities from four regions in Norway will be randomised to intervention or control arms. Each municipality cluster will recruit up to 30 health professionals to participate in the study as responders. The tailored implementation intervention comprises four components: (1) identifying local structures for implementation, (2) establishing a resource team from different professions and levels, (3) promoting knowledge on implementation and fall prevention and (4) supporting the implementation process. Each of these components includes several implementation activities. The Consolidated Framework for Implementation Research (CFIR) will be used to categorise determinants of the implementation process and the Expert Recommendations for Implementing Change (ERIC) will guide the matching of barriers to implementation strategies. The primary outcome measure for the study will be health professionals’ adherence to the national recommendations on fall prevention measured by a questionnaire. Secondary outcomes include injurious falls, the feasibility of the intervention, the experiences of the implementation process and intervention costs. Measurements will be carried out at baseline in August 2023, post-intervention in May 2024 and at a follow-up in November 2024.Discussion: This study will provide evidence on the effectiveness, intervention costs and underlying processes of change of tailored implementation of evidence-based fall prevention recommendations.Trial registration: The trial is registered in the Open Science Registry: https://doi.org/10.17605/OSF.IO/JQ9T5. Regis- tered: March 03, 2023.<br/

    Walking on common ground: a cross-disciplinary scoping review on the clinical utility of digital mobility outcomes

    Get PDF
    Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice

    Walking-related digital mobility outcomes as clinical trial endpoint measures: protocol for a scoping review

    Get PDF
    Introduction Advances in wearable sensor technology now enable frequent, objective monitoring of real-world walking. Walking-related digital mobility outcomes (DMOs), such as real-world walking speed, have the potential to be more sensitive to mobility changes than traditional clinical assessments. However, it is not yet clear which DMOs are most suitable for formal validation. In this review, we will explore the evidence on discriminant ability, construct validity, prognostic value and responsiveness of walking-related DMOs in four disease areas: Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease and proximal femoral fracture. Methods and analysis Arksey and O’Malley’s methodological framework for scoping reviews will guide study conduct. We will search seven databases (Medline, CINAHL, Scopus, Web of Science, EMBASE, IEEE Digital Library and Cochrane Library) and grey literature for studies which (1) measure differences in DMOs between healthy and pathological walking, (2) assess relationships between DMOs and traditional clinical measures, (3) assess the prognostic value of DMOs and (4) use DMOs as endpoints in interventional clinical trials. Two reviewers will screen each abstract and full-text manuscript according to predefined eligibility criteria. We will then chart extracted data, map the literature, perform a narrative synthesis and identify gaps. Ethics and dissemination As this review is limited to publicly available materials, it does not require ethical approval. This work is part of Mobilise-D, an Innovative Medicines Initiative Joint Undertaking which aims to deliver, validate and obtain regulatory approval for DMOs. Results will be shared with the scientific community and general public in cooperation with the Mobilise-D communication team. Registration Study materials and updates will be made available through the Center for Open Science’s OSFRegistry (https://osf.io/k7395)

    Walking on common ground: a cross-disciplinary scoping review on the clinical utility of digital mobility outcomes

    Get PDF
    Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice

    Technical validation of real-world monitoring of gait : a multicentric observational study

    Get PDF
    Introduction: Existing mobility endpoints based on functional performance, physical assessments and patient self-reporting are often affected by lack of sensitivity, limiting their utility in clinical practice. Wearable devices including inertial measurement units (IMUs) can overcome these limitations by quantifying digital mobility outcomes (DMOs) both during supervised structured assessments and in real-world conditions. The validity of IMU-based methods in the real-world, however, is still limited in patient populations. Rigorous validation procedures should cover the device metrological verification, the validation of the algorithms for the DMOs computation specifically for the population of interest and in daily life situations, and the users’ perspective on the device. Methods and analysis: This protocol was designed to establish the technical validity and patient acceptability of the approach used to quantify digital mobility in the real world by Mobilise-D, a consortium funded by the European Union (EU) as part of the Innovative Medicine Initiative, aiming at fostering regulatory approval and clinical adoption of DMOs. After defining the procedures for the metrological verification of an IMU-based device, the experimental procedures for the validation of algorithms used to calculate the DMOs are presented. These include laboratory and real-world assessment in 120 participants from five groups: healthy older adults; chronic obstructive pulmonary disease, Parkinson’s disease, multiple sclerosis, proximal femoral fracture and congestive heart failure. DMOs extracted from the monitoring device will be compared with those from different reference systems, chosen according to the contexts of observation. Questionnaires and interviews will evaluate the users’ perspective on the deployed technology and relevance of the mobility assessment. Ethics and dissemination: The study has been granted ethics approval by the centre’s committees (London—Bloomsbury Research Ethics committee; Helsinki Committee, Tel Aviv Sourasky Medical Centre; Medical Faculties of The University of Tübingen and of the University of Kiel). Data and algorithms will be made publicly available. Trial registration number ISRCTN (12246987)

    Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement–the Mobilise-D study protocol

    Get PDF
    Background The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility. The overarching objective of the study is to establish the clinical validity of digital outcomes in patient populations impacted by mobility challenges, and to support engagement with regulatory and health technology agencies towards acceptance of digital mobility assessment in regulatory and health technology assessment decisions. Methods/design The Mobilise-D clinical validation study is a longitudinal observational cohort study that will recruit 2400 participants from four clinical cohorts. The populations of the Innovative Medicine Initiative-Joint Undertaking represent neurodegenerative conditions (Parkinson’s Disease), respiratory disease (Chronic Obstructive Pulmonary Disease), neuro-inflammatory disorder (Multiple Sclerosis), fall-related injuries, osteoporosis, sarcopenia, and frailty (Proximal Femoral Fracture). In total, 17 clinical sites in ten countries will recruit participants who will be evaluated every six months over a period of two years. A wide range of core and cohort specific outcome measures will be collected, spanning patient-reported, observer-reported, and clinician-reported outcomes as well as performance-based outcomes (physical measures and cognitive/mental measures). Daily-living mobility and physical capacity will be assessed directly using a wearable device. These four clinical cohorts were chosen to obtain generalizable clinical findings, including diverse clinical, cultural, geographical, and age representation. The disease cohorts include a broad and heterogeneous range of subject characteristics with varying chronic care needs, and represent different trajectories of mobility disability. Discussion The results of Mobilise-D will provide longitudinal data on the use of digital mobility outcomes to identify, stratify, and monitor disability. This will support the development of widespread, cost-effective access to optimal clinical mobility management through personalised healthcare. Further, Mobilise-D will provide evidence-based, direct measures which can be endorsed by regulatory agencies and health technology assessment bodies to quantify the impact of disease-modifying interventions on mobility
    • …
    corecore