174 research outputs found
IRIS: A Generic Three-Dimensional Radiative Transfer Code
We present IRIS, a new generic three-dimensional (3D) spectral radiative
transfer code that generates synthetic spectra, or images. It can be used as a
diagnostic tool for comparison with astrophysical observations or laboratory
astrophysics experiments. We have developed a 3D short-characteristic solver
that works with a 3D nonuniform Cartesian grid. We have implemented a piecewise
cubic, locally monotonic, interpolation technique that dramatically reduces the
numerical diffusion effect. The code takes into account the velocity gradient
effect resulting in gradual Doppler shifts of photon frequencies and subsequent
alterations of spectral line profiles. It can also handle periodic boundary
conditions. This first version of the code assumes Local Thermodynamic
Equilibrium (LTE) and no scattering. The opacities and source functions are
specified by the user. In the near future, the capabilities of IRIS will be
extended to allow for non-LTE and scattering modeling. IRIS has been validated
through a number of tests. We provide the results for the most relevant ones,
in particular a searchlight beam test, a comparison with a 1D plane-parallel
model, and a test of the velocity gradient effect. IRIS is a generic code to
address a wide variety of astrophysical issues applied to different objects or
structures, such as accretion shocks, jets in young stellar objects, stellar
atmospheres, exoplanet atmospheres, accretion disks, rotating stellar winds,
cosmological structures. It can also be applied to model laboratory
astrophysics experiments, such as radiative shocks produced with high power
lasers.Comment: accepted for publication in A&A; 17 pages, 9 figures, 2 table
Gender homophily from spatial behavior in a primary school: a sociometric study
We investigate gender homophily in the spatial proximity of children (6 to 12
years old) in a French primary school, using time-resolved data on face-to-face
proximity recorded by means of wearable sensors. For strong ties, i.e., for
pairs of children who interact more than a defined threshold, we find
statistical evidence of gender preference that increases with grade. For weak
ties, conversely, gender homophily is negatively correlated with grade for
girls, and positively correlated with grade for boys. This different evolution
with grade of weak and strong ties exposes a contrasted picture of gender
homophily
Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars
(abridged) AIMS. We investigate the dynamics and stability of post-shock
plasma streaming along nonuniform stellar magnetic fields at the impact region
of accretion columns. We study how the magnetic field configuration and
strength determine the structure, geometry, and location of the shock-heated
plasma. METHODS. We model the impact of an accretion stream onto the
chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our
model takes into account the gravity, the radiative cooling, and the
magnetic-field-oriented thermal conduction. RESULTS. The structure, stability,
and location of the shocked plasma strongly depend on the configuration and
strength of the magnetic field. For weak magnetic fields, a large component of
B may develop perpendicular to the stream at the base of the accretion column,
limiting the sinking of the shocked plasma into the chromosphere. An envelope
of dense and cold chromospheric material may also develop around the shocked
column. For strong magnetic fields, the field configuration determines the
position of the shock and its stand-off height. If the field is strongly
tapered close to the chromosphere, an oblique shock may form well above the
stellar surface. In general, a nonuniform magnetic field makes the distribution
of emission measure vs. temperature of the shocked plasma lower than in the
case of uniform magnetic field. CONCLUSIONS. The initial strength and
configuration of the magnetic field in the impact region of the stream are
expected to influence the chromospheric absorption and, therefore, the
observability of the shock-heated plasma in the X-ray band. The field strength
and configuration influence also the energy balance of the shocked plasma, its
emission measure at T > 1 MK being lower than expected for a uniform field. The
above effects contribute in underestimating the mass accretion rates derived in
the X-ray band.Comment: 11 pages, 11 Figures; accepted for publication on A&A. Version with
full resolution images can be found at
http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_accretion_shocks.pd
Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors
We present results from new experiments to study the dynamics of radiative
shocks, reverse shocks and radiative precursors. Laser ablation of a solid
piston by the Orion high-power laser at AWE Aldermaston UK was used to drive
radiative shocks into a gas cell initially pressurised between and $1.0 \
bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and
experienced strong radiative cooling resulting in post-shock compressions of {
\times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission
streak imaging and interferometry (multi-frame and streak imaging) were used to
simultaneously study both the shock front and the radiative precursor. These
experiments present a new configuration to produce counter-propagating
radiative shocks, allowing for the study of reverse shocks and providing a
unique platform for numerical validation. In addition, the radiative shocks
were able to expand freely into a large gas volume without being confined by
the walls of the gas cell. This allows for 3-D effects of the shocks to be
studied which, in principle, could lead to a more direct comparison to
astrophysical phenomena. By maintaining a constant mass density between
different gas fills the shocks evolved with similar hydrodynamics but the
radiative precursor was found to extend significantly further in higher atomic
number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D
radiative-hydrodynamic simulations are presented showing good agreement with
the experimental data.Comment: HEDLA 2016 conference proceeding
Effects of Contact Network Models on Stochastic Epidemic Simulations
The importance of modeling the spread of epidemics through a population has
led to the development of mathematical models for infectious disease
propagation. A number of empirical studies have collected and analyzed data on
contacts between individuals using a variety of sensors. Typically one uses
such data to fit a probabilistic model of network contacts over which a disease
may propagate. In this paper, we investigate the effects of different contact
network models with varying levels of complexity on the outcomes of simulated
epidemics using a stochastic Susceptible-Infectious-Recovered (SIR) model. We
evaluate these network models on six datasets of contacts between people in a
variety of settings. Our results demonstrate that the choice of network model
can have a significant effect on how closely the outcomes of an epidemic
simulation on a simulated network match the outcomes on the actual network
constructed from the sensor data. In particular, preserving degrees of nodes
appears to be much more important than preserving cluster structure for
accurate epidemic simulations.Comment: To appear at International Conference on Social Informatics (SocInfo)
201
Robust modeling of human contact networks across different scales and proximity-sensing techniques
The problem of mapping human close-range proximity networks has been tackled
using a variety of technical approaches. Wearable electronic devices, in
particular, have proven to be particularly successful in a variety of settings
relevant for research in social science, complex networks and infectious
diseases dynamics. Each device and technology used for proximity sensing (e.g.,
RFIDs, Bluetooth, low-power radio or infrared communication, etc.) comes with
specific biases on the close-range relations it records. Hence it is important
to assess which statistical features of the empirical proximity networks are
robust across different measurement techniques, and which modeling frameworks
generalize well across empirical data. Here we compare time-resolved proximity
networks recorded in different experimental settings and show that some
important statistical features are robust across all settings considered. The
observed universality calls for a simplified modeling approach. We show that
one such simple model is indeed able to reproduce the main statistical
distributions characterizing the empirical temporal networks
Depth optimized efficient homomorphic sorting
We introduce a sorting scheme which is capable of efficiently sorting encrypted data without the secret key. The technique is obtained by focusing on the multiplicative depth of the sorting circuit alongside the more traditional metrics such as number of comparisons and number of iterations. The reduced depth allows much reduced noise growth and thereby makes it possible to select smaller parameter sizes in somewhat homomorphic encryption instantiations resulting in greater efficiency savings. We first consider a number of well known comparison based sorting algorithms as well as some sorting networks, and analyze their circuit implementations with respect to multiplicative depth. In what follows, we introduce a new ranking based sorting scheme and rigorously analyze the multiplicative depth complexity as O(log(N) + log(l)), where N is the size of the array to be sorted and l is the bit size of the array elements. Finally, we simulate our sorting scheme using a leveled/batched instantiation of a SWHE library. Our sorting scheme performs favorably over the analyzed classical sorting algorithms
Social network dynamics of face-to-face interactions
The recent availability of data describing social networks is changing our
understanding of the "microscopic structure" of a social tie. A social tie
indeed is an aggregated outcome of many social interactions such as
face-to-face conversations or phone-calls. Analysis of data on face-to-face
interactions shows that such events, as many other human activities, are
bursty, with very heterogeneous durations. In this paper we present a model for
social interactions at short time scales, aimed at describing contexts such as
conference venues in which individuals interact in small groups. We present a
detailed anayltical and numerical study of the model's dynamical properties,
and show that it reproduces important features of empirical data. The model
allows for many generalizations toward an increasingly realistic description of
social interactions. In particular in this paper we investigate the case where
the agents have intrinsic heterogeneities in their social behavior, or where
dynamic variations of the local number of individuals are included. Finally we
propose this model as a very flexible framework to investigate how dynamical
processes unfold in social networks.Comment: 20 pages, 25 figure
CRYSTALS-Dilithium: A lattice-based digital signature scheme
In this paper, we present the lattice-based signature scheme Dilithium, which is a component of the CRYSTALS (Cryptographic Suite for Algebraic Lattices) suite that was submitted to NIST’s call for post-quantum cryptographic standards. The design of the scheme avoids all uses of discrete Gaussian sampling and is easily implementable in constant-time. For the same security levels, our scheme has a public key that is 2.5X smaller than the previously most efficient lattice-based schemes that did not use Gaussians, while having essentially the same signature size. In addition to the new design, we significantly improve the running time of the main component of many lattice-based constructions – the number theoretic transform. Our AVX2-based implementation results in a speed-up of roughly a factor of 2 over the previously best algorithms that appear in the literature. The techniques for obtaining this speed-up also have applications to other lattice-based schemes
- …