43 research outputs found

    Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis

    Get PDF
    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (delta psi m). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of delta psi m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce delta psi m loss and apoptosis, demonstrating that dissipation of delta psi m is a requirement for cell death caused by neisserial infection

    Effect of lateral crushing on tensile property of bamboo, modal and tencel fibres

    Get PDF
    The effect of lateral crushing on the tensile properties of bamboo, modal and tencel fibres has been investigated. A fibre crushing apparatus has been used for the purpose of lateral crushing of fibres. The influence of transverse compression on the axial mechanical properties of these fibres has been analysed. The study reveals that modal fibre sustained a higher loss in tensile properties compared to bamboo and tencel. The general phenomenon obtained from the study is that the percentage loss of strength and breaking extension varies from one fibre to another based on the fibre type and morphology

    Concentration Dependent Ion Selectivity in VDAC: A Molecular Dynamics Simulation Study

    Get PDF
    The voltage-dependent anion channel (VDAC) forms the major pore in the outer mitochondrial membrane. Its high conducting open state features a moderate anion selectivity. There is some evidence indicating that the electrophysiological properties of VDAC vary with the salt concentration. Using a theoretical approach the molecular basis for this concentration dependence was investigated. Molecular dynamics simulations and continuum electrostatic calculations performed on the mouse VDAC1 isoform clearly demonstrate that the distribution of fixed charges in the channel creates an electric field, which determines the anion preference of VDAC at low salt concentration. Increasing the salt concentration in the bulk results in a higher concentration of ions in the VDAC wide pore. This event induces a large electrostatic screening of the charged residues promoting a less anion selective channel. Residues that are responsible for the electrostatic pattern of the channel were identified using the molecular dynamics trajectories. Some of these residues are found to be conserved suggesting that ion permeation between different VDAC species occurs through a common mechanism. This inference is buttressed by electrophysiological experiments performed on bean VDAC32 protein akin to mouse VDAC

    Climatic effects on sugarcane ripening under the influence of cultivars and crop age

    Get PDF
    The lack of information about the effects of cultivars, crop age and climate on the sugarcane (Saccharum ssp.) crop yield and quality has been the primary factor impacting the sugar-ethanol sector in Brazil. One of the processes about which we do not have a satisfactory understanding is sugarcane ripening and the effects of cultivars, crop age and climate on that. Sugarcane ripening is the process of sucrose accumulation in stalks, which is heavily influenced by several factors, mainly by climatic conditions such as air temperature and water deficits. Because it is a complex process, studies of the variables involved in sugarcane ripening can provide important information, resulting in a better use of commercial cultivars, bringing advantages to growers, processing units, breeding programs and scientific community. In this review, we discuss the available knowledge of the interaction between climate conditions and sugarcane ripening, under the influence of genotypic characteristics and crop age. In several studies, the main conclusion is that sugarcane ripening depends on a complex combination of climate variables, the genetic potential of cultivars and crop management. Soil moisture and air temperature are the primary variables involved in sugarcane ripening, and their combination stimulates the intensity of the process. In addition, the need for studies integrating the effects of climate on plant physiological processes and on the use of chemical agents to stimulate sugarcane ripening is highlighted

    Synthesis, structural and spectral characterization of a novel NLO crystal N,N′-diphenylguanidinium picrate: diacetone solvate

    No full text
    An organic NLO active material N,N′-diphenylguanidinium picrate: diacetone solvate (C13H14N3+. C6H2N3O7−. 2C3H6O) (DPGPD) was synthesized and single crystals were grown by slow evaporation-solution growth technique at room temperature. DPGPD crystallizes in monoclinic crystal system with noncentrosymmetric space group, Cc confirmed by single crystal X-ray diffraction analysis. The presence of various functional groups was identified from FT-IR spectral analysis and the proton transfer during the formation of compound was confirmed by NMR spectroscopic techniques. The thermal stability was investigated by TG/DTA analyses. Optical transmittance was measured by UV–Vis–NIR spectroscopy and band gap energy was calculated. Photoluminescence spectrum was used to explore its applicability towards laser diodes. Dielectric property of the material was ascertained at different temperatures and it is found that the grown crystal has higher dielectric constant in low frequencies. Photoconductivity study revealed that DPGPD exhibits positive photoconductivity. SHG property was found to be 0.6 times higher than that of KDP

    Synthesis, structural and spectral characterization of a novel NLO crystal N,N′-diphenylguanidinium picrate: diacetone solvate

    No full text
    An organic NLO active material N,N′-diphenylguanidinium picrate: diacetone solvate (C13H14N3+. C6H2N3O7−. 2C3H6O) (DPGPD) was synthesized and single crystals were grown by slow evaporation-solution growth technique at room temperature. DPGPD crystallizes in monoclinic crystal system with noncentrosymmetric space group, Cc confirmed by single crystal X-ray diffraction analysis. The presence of various functional groups was identified from FT-IR spectral analysis and the proton transfer during the formation of compound was confirmed by NMR spectroscopic techniques. The thermal stability was investigated by TG/DTA analyses. Optical transmittance was measured by UV–Vis–NIR spectroscopy and band gap energy was calculated. Photoluminescence spectrum was used to explore its applicability towards laser diodes. Dielectric property of the material was ascertained at different temperatures and it is found that the grown crystal has higher dielectric constant in low frequencies. Photoconductivity study revealed that DPGPD exhibits positive photoconductivity. SHG property was found to be 0.6 times higher than that of KDP
    corecore