72 research outputs found

    The questionnaire design process in the European Human Biomonitoring Initiative (HBM4EU)

    Get PDF
    BACKGROUND: Designing questionnaires is a key point of epidemiological studies assessing human exposure to chemicals. The lack of validated questionnaires can lead to the use of previously developed and sub-optimally adapted questionnaires, which may result in information biases that affect the study's validity. On this ground, a multidisciplinary group of researchers developed a series of tools to support data collection within the HBM4EU initiative. The objective of this paper is to share the process of developing HBM4EU questionnaires, as well as to provide researchers with harmonized procedures that could help them to design future questionnaires to assess environmental exposures. METHODS: In the frame of the work package on survey design and fieldwork of the HBM4EU, researchers carried out procedures necessary for the development of quality questionnaires and related data collection tools. These procedures consisted of a systematic search to identify questionnaires used in previous human biomonitoring (HBM) studies, as well as the development of a checklist and evaluation sheet to assess the questionnaires identified. The results of these evaluations were taken into consideration for the development of the final questionnaires. RESULTS: The main points covered by each of the sections included in HBM4EU questionnaires are described and discussed in detail. Additional tools developed for data collection in the HBM4EU (e.g. non-responder questionnaire, satisfaction questionnaire, matrix-specific questionnaire) are also addressed. Special attention is paid to the limitations faced and hurdles overcome during the process of questionnaire development. CONCLUSIONS: Designing questionnaires for use in HBM studies requires substantial effort by a multidisciplinary team to guarantee that the quality of the information collected meets the study's objectives. The process of questionnaire development described herein will contribute to improve the harmonization of HBM studies within the social and environmental context of the EU countries

    A physiologically-based kinetic (PBK) model for work-related diisocyanate exposure: Relevance for the design and reporting of biomonitoring studies

    Get PDF
    Diisocyanates are highly reactive substances and known causes of occupational asthma. Exposure occurs mainly in the occupational setting and can be assessed through biomonitoring which accounts for inhalation and dermal exposure and potential effects of protective equipment. However the interpretation of biomonitoring data can be challenging for chemicals with complex kinetic behavior and multiple exposure routes, as is the case for diisocyanates. To better understand the relation between external exposure and urinary concentrations of metabolites of diisocyanates, we developed a physiologically based kinetic (PBK) model for methylene bisphenyl isocyanate (MDI) and toluene di-isocyanate (TDI). The PBK model covers both inhalation and dermal exposure, and can be used to estimate biomarker levels after either single or chronic exposures. Key parameters such as absorption and elimination rates of diisocyanates were based on results from human controlled exposure studies. A global sensitivity analysis was performed on model predictions after assigning distributions reflecting a mixture of parameter uncertainty and population variability. Although model-based predictions of urinary concentrations of the degradation products of MDI and TDI for longer-term exposure scenarios compared relatively well to empirical results for a limited set of biomonitoring studies in the peer-reviewed literature, validation of model predictions was difficult because of the many uncertainties regarding the precise exposure scenarios that were used. Sensitivity analyses indicated that parameters with a relatively large impact on model estimates included the fraction of diisocyanates absorbed and the binding rate of diisocyanates to albumin relative to other macro molecules.We additionally investigated the effects of timing of exposure and intermittent urination, and found that both had a considerable impact on estimated urinary biomarker levels. This suggests that these factors should be taken into account when interpreting biomonitoring data and included in the standard reporting of isocyanate biomonitoring studies

    HBM4EU chromates study - the measurement of hexavalent and trivalent chromium in exhaled breath condensate samples from occupationally exposed workers across Europe

    Get PDF
    The aim of this study was to investigate the practicability of exhaled breath condensate (EBC) as a biological matrix to detect and measure hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) in workers occupationally exposed to Cr(VI). EBC samples were collected from workers in France, Finland, Italy, The Netherlands and the United Kingdom from three different target activities: chrome platers, stainless steel welders and surface treatment workers. Pre and post working week EBC samples were collected from 177 exposed workers and 98 unexposed workers (control group). Hyphenated chromatography systems with inductively coupled plasma - mass spectrometry (ICP-MS) were for the analysis. The results showed that the occupationally exposed workers had significantly higher levels of Cr(VI) and Cr(III) than the control group. Chrome platers exhibited the highest Cr(VI) levels in their EBC samples, with a significant increase from their pre to post samples for both Cr(VI) and Cr(III). A significant difference was also found between pre and post EBC samples for Cr(III) in welders. This study has shown that EBC has the potential to be a valid, non-invasive biological matrix to assess occupational exposure to Cr(VI) and Cr(III) for biological monitoring assessment, with the ability to detect low level inhalation exposures.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 733032 and received co-funding from the author’s organizations and/or Ministries.S

    HBM4EU chromates study - Usefulness of measurement of blood chromium levels in the assessment of occupational Cr(VI) exposure

    Get PDF
    Occupational exposures to hexavalent Chromium (Cr(VI)) can occur in welding, hot working stainless steel processing, chrome plating, spray painting and coating activities. Recently, within the human biomonitoring for Europe initiative (HBM4EU), a study was performed to assess the suitability of different biomarkers to assess the exposure to Cr(VI) in various job tasks. Blood-based biomarkers may prove useful when more specific information on systemic and intracellular bioavailability is necessary. To this aim, concentrations of Cr in red blood cells (RBC-Cr) and in plasma (P–Cr) were analyzed in 345 Cr(VI) exposed workers and 175 controls to understand how these biomarkers may be affected by variable levels of exposure and job procedures. Compared to controls, significantly higher RBC-Cr levels were observed in bath plating and paint application workers, but not in welders, while all the 3 groups had significantly greater P–Cr concentrations. RBC-Cr and P–Cr in chrome platers showed a high correlation with Cr(VI) in inhalable dust, outside respiratory protective equipment (RPE), while such correlation could not be determined in welders. In platers, the use of RPE had a significant impact on the relationship between blood biomarkers and Cr(VI) in inhalable and respirable dust. Low correlations between P–Cr and RBC-Cr may reflect a difference in kinetics. This study showed that Cr-blood-based biomarkers can provide information on how workplace exposure translates into systemic availability of Cr(III) (extracellular, P–Cr) and Cr(VI) (intracellular, RBC-Cr). Further studies are needed to fully appreciate their use in an occupational health and safety context

    Challenges to evidence synthesis and identification of data gaps in human biomonitoring

    Get PDF
    The increasing number of human biomonitoring (HBM) studies undertaken in recent decades has brought to light the need to harmonise procedures along all phases of the study, including sampling, data collection and analytical methods to allow data comparability. The first steps towards harmonisation are the identification and collation of HBM methodological information of existing studies and data gaps. Systematic literature reviews and meta-analyses have been traditionally put at the top of the hierarchy of evidence, being increasingly applied to map available evidence on health risks linked to exposure to chemicals. However, these methods mainly capture peer-reviewed articles, failing to comprehensively identify other important, unpublished sources of information that are pivotal to gather a complete map of the produced evidence in the area of HBM. Within the framework of the European Human Biomonitoring Initiative (HBM4EU) initiative—a project that joins 30 countries, 29 from Europe plus Israel, the European Environment Agency and the European Commission—a comprehensive work of data triangulation has been made to identify existing HBM studies and data gaps across countries within the consortium. The use of documentary analysis together with an up-to-date platform to fulfil this need and its implications for research and practice are discussed

    urinary metabolomics study of workers exposed to hexavalent chromium

    Get PDF
    Exposure to hexavalent chromium Cr(VI) may occur in several occupational activities, placing workers in many industries at risk for potential related health outcomes. Untargeted metabolomics was applied to investigate changes in metabolic pathways in response to Cr(VI) exposure. We obtained our data from a study population of 220 male workers with exposure to Cr(VI) and 102 male controls from Belgium, Finland, Poland, Portugal and the Netherlands within the HBM4EU Chromates Study. Urinary metabolite profiles were determined using liquid chromatography mass spectrometry, and differences between post-shift exposed workers and controls were analyzed using principal component analysis. Based on the first two principal components, we observed clustering by industrial chromate application, such as welding, chrome plating, and surface treatment, distinct from controls and not explained by smoking status or alcohol use. The changes in the abundancy of excreted metabolites observed in workers reflect fatty acid and monoamine neurotransmitter metabolism, oxidative modifications of amino acid residues, the excessive formation of abnormal amino acid metabolites and changes in steroid and thyrotropin-releasing hormones. The observed responses could also have resulted from work-related factors other than Cr(VI). Further targeted metabolomics studies are needed to better understand the observed modifications and further explore the suitability of urinary metabolites as early indicators of adverse effects associated with exposure to Cr(VI).publishersversionpublishe

    Approaches to mixture risk assessment of PFASs in the European population based on human hazard and biomonitoring data

    Get PDF
    Per- and polyfluoroalkyl substances (PFASs) are a highly persistent, mobile, and bioaccumulative class of chemicals, of which emissions into the environment result in long-lasting contamination with high probability for causing adverse effects to human health and the environment. Within the European Biomonitoring Initiative HBM4EU, samples and data were collected in a harmonized way from human biomonitoring (HBM) studies in Europe to derive current exposure data across a geographic spread. We performed mixture risk assessments based on recent internal exposure data of PFASs in European teenagers generated in the HBM4EU Aligned Studies (dataset with N = 1957, sampling years 2014-2021). Mixture risk assessments were performed based on three hazard-based approaches: the Hazard Index (HI) approach, the sum value approach as used by the European Food Safety Authority (EFSA) and the Relative Potency Factor (RPF) approach. The HI approach resulted in the highest risk estimates, followed by the RPF approach and the sum value approach. The assessments indicate that PFAS exposure may result in a health risk in a considerable fraction of individuals in the HBM4EU teenager study sample, thereby confirming the conclusion drawn in the recent EFSA scientific opinion. This study underlines that HBM data are of added value in assessing the health risks of aggregate and cumulative exposure to PFASs, as such data are able to reflect exposure from different sources and via different routes.This work was supported by the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 733032 HBM4EU (www.HBM4EU.eu), and received co-funding from the au thors’ organizations. The Norwegian Institute of Public Health (NIPH) has contributed to funding of the Norwegian Environmental Biobank (NEB), and the laboratory measurements have partly been funded by the Research Council of Norway through research projects (275903 and 268465). The PCB cohort (follow-up) received additional funding from the Ministry of Health of the Slovak Republic (program 07B0103).S

    HBM4EU Occupational Biomonitoring Study on e-Waste—Study Protocol

    Get PDF
    Funding Information: This work has received external funding from the European Union?s Horizon 2020 research and innovation program under grant agreement No. 733032 and received co-funding from the author?s organizations and/or Ministries. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Workers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals. If exposure occurs, this may result in uptake and potential adverse health effects. Thus, exposure surveillance is an important requirement for health risk management and prevention of occupational disease. Human biomonitoring by measurement of specific biomarkers in body fluids is considered as an effective method of exposure surveillance. The aim of this study is to investigate the internal exposure of workers processing e-waste using a human biomonitoring approach, which will stimulate improved work practices and contribute to raising awareness of potential hazards. This exploratory study in occupational exposures in e-waste processing is part of the European Human Biomonitoring Initiative (HBM4EU). Here we present a study protocol using a cross sectional survey design to study worker’s exposures and compare these to the exposure of subjects preferably employed in the same company but with no known exposure to industrial recycling of e-waste. The present study protocol will be applied in six to eight European countries to ensure standardised data collection. The target population size is 300 exposed and 150 controls. Biomarkers of exposure for the following chemicals will be used: chromium, cadmium and lead in blood and urine; brominated flame retardants and polychlorobiphenyls in blood; mercury, organophosphate flame retardants and phthalates in urine, and chromium, cadmium, lead and mercury in hair. In addition, the following effect biomarkers will be studied: micronuclei, epigenetic, oxidative stress, inflammatory markers and telomere length in blood and metabolomics in urine. Occupational hygiene sampling methods (airborne and settled dust, silicon wristbands and handwipes) and contextual information will be collected to facilitate the interpretation of the biomarker results and discuss exposure mitigating interventions to further reduce exposures if needed. This study protocol can be adapted to future European-wide occupational studiespublishersversionPeer reviewe

    HBM4EU Occupational Biomonitoring Study on e-Waste—Study Protocol

    Get PDF
    Funding Information: This work has received external funding from the European Union?s Horizon 2020 research and innovation program under grant agreement No. 733032 and received co-funding from the author?s organizations and/or Ministries. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Workers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals. If exposure occurs, this may result in uptake and potential adverse health effects. Thus, exposure surveillance is an important requirement for health risk management and prevention of occupational disease. Human biomonitoring by measurement of specific biomarkers in body fluids is considered as an effective method of exposure surveillance. The aim of this study is to investigate the internal exposure of workers processing e-waste using a human biomonitoring approach, which will stimulate improved work practices and contribute to raising awareness of potential hazards. This exploratory study in occupational exposures in e-waste processing is part of the European Human Biomonitoring Initiative (HBM4EU). Here we present a study protocol using a cross sectional survey design to study worker’s exposures and compare these to the exposure of subjects preferably employed in the same company but with no known exposure to industrial recycling of e-waste. The present study protocol will be applied in six to eight European countries to ensure standardised data collection. The target population size is 300 exposed and 150 controls. Biomarkers of exposure for the following chemicals will be used: chromium, cadmium and lead in blood and urine; brominated flame retardants and polychlorobiphenyls in blood; mercury, organophosphate flame retardants and phthalates in urine, and chromium, cadmium, lead and mercury in hair. In addition, the following effect biomarkers will be studied: micronuclei, epigenetic, oxidative stress, inflammatory markers and telomere length in blood and metabolomics in urine. Occupational hygiene sampling methods (airborne and settled dust, silicon wristbands and handwipes) and contextual information will be collected to facilitate the interpretation of the biomarker results and discuss exposure mitigating interventions to further reduce exposures if needed. This study protocol can be adapted to future European-wide occupational studiespublishersversionPeer reviewe

    HBM4EU chromates study: determinants of exposure to hexavalent chromium in plating, welding and other occupational settings

    Get PDF
    Work-related exposures in industrial processing of chromate (chrome plating, surface treatment, and welding) raise concerns regarding the health risk of hexavalent chromium (Cr(VI)). In this study, performed under the HBM4EU project, we focused on better understanding the determinants of exposure and recognising how risk management measures (RMMs) contribute to a reduction in exposure. HBM and occupational hygiene data were collected from 399 workers and 203 controls recruited in nine European countries. Urinary total chromium (U-Cr), personal inhalable and respirable dust of Cr and Cr(VI), and Cr from hand wipes were collected. Data on the RMMs were collected by questionnaires. We studied the association between different exposure parameters and the use of RMMs. The relationship between exposure by inhalation and U-Cr in different worker groups was analysed using regression analysis and found a strong association. Automatisation of Cr electroplating dipping explained lower exposure levels in platers. The use of personal protective equipment resulted in lower U-Cr levels in welding, bath plating, and painting. An effect of wearing gloves was observed in machining. An effect of local exhaust ventilation and training was observed in welding. Regression analyses showed that in platers, exposure to an air level of 5 µg/m3 corresponds to a U-Cr level of 7 µg/g of creatinine. In welders, the same inhalation exposure resulted in lower U-Cr levels reflecting toxicokinetic differences of different chromium species.info:eu-repo/semantics/publishedVersio
    corecore