45,139 research outputs found

    Unearthing learners’ conceptions of reflection to innovate business education for the 21st century

    Get PDF
    The development of learners’ capacities for critical reflection is an important learning outcome for 21st century business education. Theories suggest that a learner holds a particular orientation to reflection, and that this perspective will be influenced by his or her underlying beliefs. This, coupled with an increased focus on the student experience, personal development, and self-regulation in higher education, offers scope for considering instructional design from a second-order perspective, or in other words, from the student’s point of view. This study sought to understand: 1) the ways that business students orientate to reflection, 2) the different conceptions they hold of reflection, and 3) whether there is a relationship between the two. Reflective learning questionnaires were completed by 112 business students studying at the University of Northampton. Survey results showed that while the research instrument was a good fit for investigating orientations to and conceptions of reflection, there did not appear to be a correlation between the two. Learning analytics such as these will be useful for considering how the University can design more meaningful business curricula. However, the disconnect between conceptions of and orientations to reflection needs to be explored through further research

    A comparison of green space indicators for epidemiological research

    Get PDF
    <p><b>Background</b> The potential for natural environments to be salutogenic has received growing interest from epidemiologists, but there has been no critical examination of the extent to which associations between green space and health might vary according to the indicator of green space coverage used.</p> <p><b>Methods</b> Three different indicators of green space coverage were derived for a set of 268 small areas in four cities within Britain. The indicators had different origins and provided a spectrum of sensitivity from larger spaces only, through to ambient greenery. Two indicators reproducible for anywhere in Europe were included. Agreement between the indicators on the quantity of green space in a small area, and their independent association with measures of mortality and self-reported morbidity, were compared.</p> <p><b>Results</b> Overall, the indicators showed relatively close overall agreement (all r2>0.89, p<0.001). However, agreement varied by level of area socioeconomic deprivation (p<0.001). The indicator that detected larger spaces only found less green space in areas of socioeconomic deprivation than the other two. Despite this difference, all indicators showed similar protective associations with the risk of mortality and self-reported morbidity suggesting that larger green spaces may be more important for health effects than smaller spaces.</p> <p><b>Conclusions</b> Associations between green space indicator and health were not sensitive to indicator origin and type. This raises the possibility of trans-European epidemiological studies. Larger green spaces may be the most important for health effects, but may also be less prevalent in more deprived areas.</p&gt

    Direct N-body Simulations of Rubble Pile Collisions

    Full text link
    There is increasing evidence that many km-sized bodies in the Solar System are piles of rubble bound together by gravity. We present results from a project to map the parameter space of collisions between km-sized spherical rubble piles. The results will assist in parameterization of collision outcomes for Solar System formation models and give insight into fragmentation scaling laws. We use a direct numerical method to evolve the positions and velocities of the rubble pile particles under the constraints of gravity and physical collisions. We test the dependence of the collision outcomes on impact parameter and speed, impactor spin, mass ratio, and coefficient of restitution. Speeds are kept low (< 10 m/s, appropriate for dynamically cool systems such as the primordial disk during early planet formation) so that the maximum strain on the component material does not exceed the crushing strength. We compare our results with analytic estimates and hydrocode simulations. Off-axis collisions can result in fast-spinning elongated remnants or contact binaries while fast collisions result in smaller fragments overall. Clumping of debris escaping from the remnant can occur, leading to the formation of smaller rubble piles. In the cases we tested, less than 2% of the system mass ends up orbiting the remnant. Initial spin can reduce or enhance collision outcomes, depending on the relative orientation of the spin and orbital angular momenta. We derive a relationship between impact speed and angle for critical dispersal of mass in the system. We find that our rubble piles are relatively easy to disperse, even at low impact speed, suggesting that greater dissipation is required if rubble piles are the true progenitors of protoplanets.Comment: 30 pages including 4 tables, 8 figures. Revised version to be published in Icarus

    Promoting reflection in asynchronous virtual learning spaces: tertiary distance tutors' conceptions

    Get PDF
    Increasingly, universities are embedding reflective activities into the curriculum. With the growth in online tertiary education, how effectively is reflection being promoted or used in online learning spaces? Based on the notion that teachers’ beliefs will influence their approaches to teaching, this research sought to understand how a group of distance tutors at the UK Open University conceptualised reflection. It was hoped that these findings would illuminate their approaches to promoting reflection as part of their online pedagogies. Phenomenographic analysis indicated that these tutors conceptualised reflection in four qualitatively different ways. Furthermore, the data suggested that these educators held a combination of two conceptions: one that understood the origin of being reflective and one that understood the purpose of reflection. Analysis of structural aspects of these conceptions offered insight into tutors’ own perspectives for what is needed to make online learning environments fertile territory for reflective learning

    The solar wind structures associated with cosmic ray decreases and particle acceleration in 1978-1982

    Get PDF
    The time histories of particles in the energy range 1 MeV to 1 GeV at times of all greater than 3 percent cosmic ray decreases in the years 1978 to 1982 are studied. Essentially all 59 of the decreases commenced at or before the passages of interplanetary shocks, the majority of which accelerated energetic particles. We use the intensity-time profiles of the energetic particles to separate the cosmic ray decreases into four classes which we subsequently associate with four types of solar wind structures. Decreases in class 1 (15 events) and class 2 (26 events) can be associated with shocks which are driven by energetic coronal mass ejections. For class 1 events the ejecta is detected at 1 AU whereas this is not the case for class 2 events. The shock must therefore play a dominant role in producing the depression of cosmic rays in class 2 events. In all class 1 and 2 events (which comprise 69 percent of the total) the departure time of the ejection from the sun (and hence the location) can be determined from the rapid onset of energetic particles several days before the shock passage at Earth. The class 1 events originate from within 50 deg of central meridian. Class 3 events (10 decreases) can be attributed to less energetic ejections which are directed towards the Earth. In these events the ejecta is more important than the shock in causing a depression in the cosmic ray intensity. The remaining events (14 percent of the total) can be attributed to corotating streams which have ejecta material embedded in them

    The lower hybrid wave cutoff: A case study in eikonal methods

    Full text link
    Eikonal, or ray tracing, methods are commonly used to estimate the propagation of radio frequency fields in plasmas. While the information gained from the rays is quite useful, an approximate solution for the fields would also be valuable, e.g., for comparison to full wave simulations. Such approximations are often difficult to perform numerically because of the special care which must be taken to correctly reconstruct the fields near reflection and focusing caustics. In this paper, we compare the standard eikonal method for approximating fields to a method based on the dynamics of wave packets. We compare the approximations resulting from these two methods to the analytical solution for a lower hybrid wave reflecting from a cutoff. The algorithm based on wave packets has the advantage that it can correctly deal with caustics, without any special treatment.Comment: 12 pages, 17 figures, To appear in Physics of Plasmas, Received 14 December 2009; accepted 29 March 2010

    Optical study of flow and combustion in an HCCI engine with negative valve overlap

    Get PDF
    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed. © 2006 IOP Publishing Ltd
    corecore