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One of the most widely used methods to enable Homogeneous Charge Compression Ignition 
(HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot 
residual gas. The characteristics of air motion with specially designed valve events having 
reduced valve lift and durations associated with HCCI engines and their effect on subsequent 
combustion are not yet fully understood. In addition, the ignition process and combustion 
development in such engines are very different from those in conventional spark-ignition or 
diesel compression ignition engines. Very little data has been reported concerning optical 
diagnostics of the flow and combustion in the engine using negative valve overlapping. This 
paper presents an experimental investigation into the in-cylinder flow characteristics and 
combustion development in an optical engine operating in HCCI combustion mode. PIV 
measurements have been taken under motored engine conditions to provide a quantitative flow 
characterisation of negative valve overlap in-cylinder flows. The ignition and combustion 
process was imaged using a high resolution charge coupled device (CCD) camera and the 
combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure 
data which assisted the analysis of the images.  It is found that the flow characteristics with 
negative valve overlapping are less stable and more valve event driven than typical spark 
ignition in-cylinder flows, while the combustion initiation locations are not uniformly 
distributed. 

1.  Introduction 
Homogeneous Charge Compression Ignition engines hold the potential to significantly reduce Oxides 
of Nitrogen (NOx) emissions and improve fuel consumption of automotive engines. Negative valve 
overlapping has been widely used to enable the so-called 'controlled auto-ignition' and this 
arrangement has been researched along with hydrogen addition by the authors previously [1]. There 
are many experimental techniques that have been applied and are available to detect and either 
quantify or qualify flow conditions prevailing before the onset of combustion. These include flow 
visualisation, PIV [3,5], particle tracking velocimetry (PTV) [6] and Laser Doppler Anemometry 
(LDA) [4]. There also exist many techniques that can detect combustion phenomena such as ionisation 
probe sensors and Laser Induced Florescence (LIF) [7,9]. The characteristics of air motion with 
specially designed valve events having reduced valve lift and durations associated with HCCI engines 
have also been studied using CFD simulations, but limited experimental data is available of the in-
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cylinder flow process. Direct optical observation of the combustion is one of the most capable 
methods to visualise and understand the in-cylinder combustion process. The typical combustion 
characteristics observed using combustion visualisation include combustion initiation location, flame 
front shape and flame speed. HCCI combustion imaging has previously been performed by Hultquist 
et.al. in 2002 [2] who performed simultaneous fuel tracer LIF and chemiluminescence imaging to 
study the HCCI development process within one cycle as compared to SI combustion. Relatively less 
information is available concerning the optical measurement of combustion in HCCI engines operating 
with negative valve overlap. 

This paper presents an experimental investigation of the characteristics of in-cylinder flow and 
combustion development in an optical HCCI engine with negative valve overlapping. PIV 
measurements have been taken under motored engine conditions and a quantitative analysis has been 
carried out to characterise the flow with negative valve overlap conditions. A high resolution charge 
coupled device (CCD) camera was used to take images of the combustion. The imaging data was 
supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the 
combustion development. The experimental systems are described in the next section and the 
measurement results are then presented and discussed, with a summary of findings at the end of the 
paper. 

2.  Experimental System 
A single cylinder version of the Jaguar 2.5L V6 engine, Figure 1, was built with optical access 
possible through the extended (bowditch design) piston with 65mm quartz window viewed off a 45° 
stationary mirror, barrel (bore: 81.64mm, either long or short liner) and through a quartz window that 
could be inserted in the vertical wall of the pentroof.  The engine had compression ratio (CR) of 12.9:1 
and was fitted with 150° duration, low lift camshafts for HCCI operation; HCCI was enabled utilising 
the symmetrical negative valve overlapping technique. The engine geometry details are shown in 
Table 1. 

 

Figure 1. Optical engine cell. 
 
The charge was fed to a standard inlet port through an air filter, rotary gas volumetric flow meter, 

manual throttle, intake heater and plenum. The intake heater, required for enabling HCCI combustion 
of natural gas with the low CR of 12.9:1, consisted of a 3kW inline and 2kW band heaters capable of 
supplying a sustained heated intake temperature in excess of 250ºC at 1000 RPM with the low lift 
HCCI camshafts. An electronically controlled bypass system fed compressed air through the heaters to 
permit warm-up and cool down of the intake system without motoring the engine. This was isolated 
before cranking. Inlet air temperature was measured with a K-type thermocouple located just upstream 
of the inlet port. A PID controller compared this actual inlet temperature with the requested 
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temperature and cycled the heaters on and off appropriately. Air / Fuel Ratio (AFR) monitoring was 
provided with an ETAS™ lambda checker fitted approximately 1m downstream of the exhaust valves. 
The device indicated lambda to two decimal places. 

 

Type: 4 valve / 
cylinder 

Fuel added in 
intake port: Natural gas 

CR: 12.9:1 Intake 
temperature: 300 – 550 K 

Bore: 81.64 mm Typical Inlet 
MOP: 

450-550°CA 
aTDC 

Stroke: 79.5 mm Typical 
Exhaust MOP:

180-250°CA 
aTDC 

Table 1, Engine details. 
 
For the PIV measurement, the flow was seeded with light-reflecting oil droplets. It is believed that 

the seeding accurately follows the internal flow structures. A thin laser light sheet was produced that 
defined a two-dimensional plane in the flow field, Figure 2. The LaVision FlowMaster PIV system 
was used which includes a dual frame CCD camera for cross-correlation PIV. 

  

LaserLaserLaser

 

Figure 2. Schematic view of the PIV system setup.   
 
In each case the light sheet was inserted through the centreline of the piston and was of thickness 

1.1 mm ± 0.1 mm. The pulse duration was 10 ns and the pulses were separated by between 20 – 40 µs 
depending on flow velocity. The third velocity component could therefore reach 10 m/s with 2/3 of the 
particles remaining within the sheet. As the third component is not expected to exceed this limit, it is 
anticipated that the calculated vectors are a realistic representation of the in-cylinder flow. 

The raw particle image was corrected for the distortion introduced by the cylinder liner through 
software.  The PIV processing utilised a multi-pass technique with an initial correlation at 128x128 
pixels and a final pass with an interrogation region size of 32x32 pixels with a 50% overlap. Limited 
vector post processing was performed and was restricted to the removal of vectors with excessively 
large magnitudes. 
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The instrumentation used for the combustion imaging was an Andor iSTAR™, 1024x1024 pixel, 
intensified CDD camera with Nikkor UV lens. The spectral acceptance of the intensified camera 
system ranges from 180 to 850nm. The camera viewed the combustion chamber off a stationary 45° 
mirror mounted in the piston extension. The combustion piston was fitted with a 65 mm diameter 
silica window which is approximately 65% of the cylinder cross section, Figure 3. Such an 
experimental arrangement permitted a spatial resolution in the order of ½ mm, therefore these results 
will be referred to as 'high-resolution combustion imaging'.   

 

 

Figure 3. Photograph of the high-compression optical piston. 
 
The engine was motored at the fixed speed of 1000 RPM. Valve events and fuelling that would 

provide a load of between 2.5 – 3.5 bar IMEP (Indicated Mean Effective Pressure, integrated over 
720° CA) were chosen. The engine was started in SI and eased into HCCI mode through spark control 
for any auto-ignition tests. Intake temperature was controlled to maintain a consistent combustion 
phasing. 

3.  Results and Discussion  

3.1.  PIV measurements  
The testing was performed at various engine conditions. For all valve and imaging timings, 0° is TDC 
gas exchange. Primarily, the aim of the PIV investigation was to establish the effect of the valve 
strategies involving large negative valve overlap (NVO) and short duration (and therefore also lower 
lift) on in-cylinder flow.  

Results from a typical HCCI engine condition motored at 1000 RPM (case 1) are presented in 
Figure 4. The valve timing for this condition was 125/110 (IVO [deg CA aTDC]/EVC [deg CA 
bTDC]). The maximum magnitudes of the in-cylinder flow with NVO valve events were observed to 
be as high as around 20m/s (5 times mean piston speed) early in the intake stroke due to the reduced 
valve duration and lift. The flow velocity at the end of compression dropped to under 4 m/s (just under 
mean piston speed) during compression.   

The results from case 2, the higher load condition (around 3.5 bar IMEP) HCCI case as determined 
by the symmetric valve timing of 105/105, are presented in Figure 5. In general the flow structures 
observed at this modified valve timing NVO case are similar to those observed at the valve timing of 
case 1 but it is not possible to compare the flow structures at 135 deg due to water vapour 
condensation in-cylinder during the intake stroke. However at 180 deg (Figure 5a) the flows showed 
some differences. First, due to the advanced intake valve timing over case 1, we no longer observe the 
higher velocity flow around the intake valve. Secondly, also due to the advanced valve timing, the 
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bulk flow structures off the piston have a higher flow magnitude. This is due to higher flow 
magnitudes earlier in the intake stroke. 

In general the overall flow structure captured at 225 deg high load (not presented) appear very 
similar to that of the 225 deg standard case (not presented). Surprisingly, although the flow structure 
appears similar, and the magnitude of the tumble ratio is very similar, the tumble ratio now indicates 
rotation in the opposite direction (now anti-clockwise in the plane of the arrangement shown). The 
cause of this discrepancy is the direction of the bulk resultant flow at 225 deg that is dominant in the 
tumble ratio calculation. 

Flow 45 degrees later at 270 deg (Figure 5b) is very similar to the flows observed in the standard 
case (Figure 4b). 

 

  a b 

 

Figure 4. Case 1 (NVO, 150° duration, 1000 RPM). Vector fields captured at 135° (a) and 270° (b). 

 

 
b a 

 

Figure 5. Case 2 (reduced negative valve overlap, 150° valve duration, 1000 RPM). Vector fields 
captured at 180° (a) and 270° (b). 

 
Typically, significant variation was experienced on a cycle to cycle basis on the PIV testing, 

however, it is observed that the main characteristics of the flow are visible in the individual cycles, 
albeit not as clearly. Two differences were noted; first, although the bulk flow structures generally 
exist in the individual cycles, the velocities tend to vary significantly. Secondly, smaller flow 
structures (usually vortices) are observed in individual cycles, however since they are so short lived 
and unstable they do not appear in the mean flow field. 
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The large variations of the in-cylinder flow cycle to cycle also causes a large variation in the 
tumble ratio cycle to cycle. This is illustrated in Figure 6. The tumble ratio for the individual cycles 
varies from positive 0.6 to negative 0.6, a range of 1.2 ratios. There is minimal variation in tumble 
ratio whether calculated by taking the mean of the individual vector field tumble ratios, or if the 
tumble ratio is determined from the mean vector field. This finding is similar to that observed with 
typical SI valve events. 
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Figure 6. Cycle to cycle variation in tumble ratio at 180°, for case 1. 
 
In general, it appears that when compared with previously investigated SI engine conditions, NVO 

condition generates an in-cylinder air motion that is less uniform and less stable. 

3.2.  Combustion Imaging 
High-resolution combustion imaging was performed at 1° CA intervals starting before combustion 
initiation and finishing after complete visible chamber engulfment for various engine conditions.  

3.2.1.  Cycle to cycle variation  
The high-resolution combustion imaging is particularly useful for yielding information on combustion 
area contours, combustion initiation centres and cycle-to-cycle variation in initial combustion 
development. Figure 7 provides a comparison of combustion areas where each image is captured at the 
same crank angle of 7° bTDC (but in different engine cycles) and integrated over a time period 
equivalent to one degree crank angle.  

In this case the engine was operated at stoichiometric with natural gas as fuel. Intake temperature 
was held constant at 200°C and the in-cylinder pressure indicated load (IMEP) of 2.4 bar. Intensifier 
integration period was 167μs corresponding to 1°CA. Immediately obvious is the large variation in 
combustion contour shape between individual cycles. 

Interestingly, for example the images labelled 4 and 5 in Figure 7 show similar combustion area 
contour, however these are positioned differently in the chamber. Both frames have one large 
combusting zone and at least one smaller detached auto ignited combustion. It appears that in both 
frames these combusting zones are detached from the cylinder wall. Also noticeable is the large 
variation in pattern of the distribution of combustion areas between individual images. It can be a 
single relatively large burning area (as in frame 6), or several smaller areas (as in frame 3), while in 
each case the total combustion area is similar (9% ± 2.5%). 
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Figure 7. Combustion region structure and initiation imaged at 7°bTDC. 
 
Finally, it is possible to compare the position in the chamber where the combustion initiation 

occurs. Investigation from a large number of cycles suggests that the dominant area of combustion 
initiation is the left hand side of the chamber (corresponding to the front of engine, between intake and 
exhaust valves). In general, however, combustion initiation with natural gas as a fuel appears random. 

3.2.2.  Combustion development 
Imaging conducted at increasing crank angles, although from different cycles, permits a combustion 
development sequence to be built up. Such results are presented in Figure 8, where the engine was 
again operated at stoichiometric with natural gas as fuel. Intake temperature was held constant at 
200°C and the in-cylinder pressure indicated load (IMEP) of 2.4 bar. Intensifier integration period was 
167μs corresponding to 1°CA. 

1°CA aTDC 2°CA aTDC

5°CA aTDC 8°CA aTDC
 

Figure 8. Combustion development. 
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A clear combustion development is obvious starting with multiple ignition sites and progressing to 
complete chamber engulfment. In this regard, various methods of image processing were performed; 
possibly the most informative were calculations of the area of the projected cylinder volume engulfed 
by combustion. This was performed by a simple threshold technique whereby pixel intensities above a 
threshold of 1.5% of the maximum grey level were assumed to be representing visible combustion, 
below that threshold they were not. Such results are presented in Figure 9 (crosses) where they are 
compared to mass fraction burned (lines with no markers). 

In this case the engine was operated at stoichiometric with natural gas or natural gas with hydrogen 
(H2) addition (hydrogen replaced some of natural gas to maintain lambda=1 in volumetric ratio of 
1:10) fuels as indicated (See [1,8] for purpose of H2 addition). Intake temperature was held constant at 
200°C and the in-cylinder pressure indicated load (IMEP) varied from 2.5 bar to 2.9 bar depending on 
combustion phasing. Intensifier integration period was 167μs corresponding to 1°CA. 

Such an approach provides an opportunity to investigate how individual variables affect the 
combustion phasing and the rate of combustion development. In this context, Figure 9 shows the 
effect of H2 addition on combustion development. Comparing the crank timing corresponding to the 
5% and 95% chamber area engulfed indicates that while the H2 addition advances the early 
combustion development (5% area) by only 3°, it significantly accelerates the rate of combustion 
development as the 95% chamber engulfed can be seen to be approximately 8° advanced. This was not 
as evident in the fuel mass fraction burned plots where the H2 addition advanced the timing of 5% mfb 
by 3° CA and the 95° burn by only 5° CA. Although it should be noted that the part of the combustion 
chamber near the cylinder wall is not visible due to the limitations of the window size, the uncertainty 
in estimating the total combustion area is not expected as significant as for spark-ignition engines 
because of the nature of the multi-point ignition of HCCI. 

 

 

Figure 9. Comparison of burn area and MFB for NG HCCI, with and without H2 addition. 
(Combustion areas are average from 10 cycles, mfb average of 100 cycles) 
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4.  Conclusions 
An experimental investigation has been carried out in a specially designed optical engine operating in 
HCCI mode to study to the in-cylinder flow field and combustion development with negative valve 
overlap. The measurements using PIV and combustion imaging techniques have revealed the 
following: 

• In contrast to the flow in SI engines with conventional positive valve overlapping, the 
negative valve overlap with reduced valve lift and duration generated intake flow velocities 
significantly higher than those found with typical positive overlapping valve strategies. For 
example at 1000RPM, the maximum magnitudes of the in-cylinder flow with NVO valve 
events were observed to be as high as around 20m/s (5 times mean piston speed) early in the 
intake stroke due to the reduced valve duration and lift. The flow velocity at the end of 
compression dropped to under 4 m/s (just under mean piston speed) during compression.   

• Flow motion during intake was largely valve event and induction driven. During compression, 
the flow showed very little structure and was largely piston driven upward flow. Flow 
fluctuations were much stronger during the compression stroke, which are reflected by high 
cycle-by-cycle variations of tumble ratio.   

• It was noted that with natural gas HCCI, multiple separate combustion sites were observed, 
with a slight tendency for initiations to occur towards one side of the chamber. 

• It was shown that H2 addition to natural gas advanced combustion initiation (timing of 5% 
area of chamber engulfed by combustion advanced by 3° CA), and the speed of combustion 
development also increased considerably (timing of 95% combustion area advanced by 8-9° 
CA). This was not as evident in the fuel mass fraction burned plots in which although the 
advance in 5% mfb timing due to H2 addition is also approximately 3° CA, the 95% mfb 
advancement is only 5° CA. This indicates the effect of hydrogen as reaction promoter on both 
combustion initiation and burn rate. 
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