3,522 research outputs found

    Investigation of climate change and history of lead deposition using soil archives

    Get PDF
    Our study focused on the investigation of climate change and the fate of lead in soils from the Low Volga region of Russia over 3500 years. We used a comparative analysis of the modern soils and palaeosols preserved under burial mounds, which date back to the Middle Ages and the Early Iron and Bronze Ages. A climate reconstruction showed periodic changes, with the most humid climate conditions occurring during Golden Horde period. However, we could not find any consistent changes in Pb concentration and profile distribution following the climate change. We observed a clear difference in Pb isotopic ratios between the lower and upper horizons both for the modern and buried profiles, reflecting the influence of atmospheric lead depositions. However, there is no statistically significant difference in Pb isotopic ratios between the upper horizons of buried and modern soils (except modern soils collected in the vicinity of a motorway). This means that either anthropogenic input due to long range air transport was insignificant, or that airborne anthropogenic lead and natural airborne lead have similar isotopic composition

    The Virginia Beach Quest for Water: Drowning in a Sea of Litigation

    Get PDF

    A probabilistic analysis framework for malicious insider threats

    Get PDF
    Malicious insider threats are difficult to detect and to mitigate. Many approaches for explaining behaviour exist, but there is little work to relate them to formal approaches to insider threat detection. In this work we present a general formal framework to perform analysis for malicious insider threats, based on probabilistic modelling, verification, and synthesis techniques. The framework first identifies insiders' intention to perform an inside attack, using Bayesian networks, and in a second phase computes the probability of success for an inside attack by this actor, using probabilistic model checking

    Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel

    Get PDF
    We investigate a new scheme for astronomical spectrograph calibration using the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our concept is based upon a single-mode fiber channel, that simultaneously feeds the spectrograph with comb light and sunlight. This yields nearly perfect spatial mode matching between the two sources. In combination with the absolute calibration provided by the frequency comb, this method enables extremely robust and accurate spectroscopic measurements. The performance of this scheme is compared to a sequence of alternating comb and sunlight, and to absorption lines from Earth's atmosphere. We also show how the method can be used for radial-velocity detection by measuring the well-explored 5-minute oscillations averaged over the full solar disk. Our method is currently restricted to solar spectroscopy, but with further evolving fiber-injection techniques it could become an option even for faint astronomical targets.Comment: 21 pages, 11 figures. A video abstract for this paper is available on youtube. For watching the video, please follow https://www.youtube.com/watch?v=oshdZgrt89I . The video abstract is also available for streaming and download on the related article website of New Journal of Physic

    Model based analysis of insider threats

    Get PDF
    In order to detect malicious insider attacks it is important to model and analyse infrastructures and policies of organisations and the insiders acting within them. We extend formal approaches that allow modelling such scenarios by quantitative aspects to enable a precise analysis of security designs. Our framework enables evaluating the risks of an insider attack to happen quantitatively. The framework first identifies an insider's intention to perform an inside attack, using Bayesian networks, and in a second phase computes the probability of success for an inside attack by this actor, using probabilistic model checking. We provide prototype tool support using Matlab for Bayesian networks and PRISM for the analysis of Markov decision processes, and validate the framework with case studies

    A Frequency Comb calibrated Solar Atlas

    Full text link
    The solar spectrum is a primary reference for the study of physical processes in stars and their variation during activity cycles. In Nov 2010 an experiment with a prototype of a Laser Frequency Comb (LFC) calibration system was performed with the HARPS spectrograph of the 3.6m ESO telescope at La Silla during which high signal-to-noise spectra of the Moon were obtained. We exploit those Echelle spectra to study the optical integrated solar spectrum . The DAOSPEC program is used to measure solar line positions through gaussian fitting in an automatic way. We first apply the LFC solar spectrum to characterize the CCDs of the HARPS spectrograph. The comparison of the LFC and Th-Ar calibrated spectra reveals S-type distortions on each order along the whole spectral range with an amplitude of +/-40 m/s. This confirms the pattern found by Wilken et al. (2010) on a single order and extends the detection of the distortions to the whole analyzed region revealing that the precise shape varies with wavelength. A new data reduction is implemented to deal with CCD pixel inequalities to obtain a wavelength corrected solar spectrum. By using this spectrum we provide a new LFC calibrated solar atlas with 400 line positions in the range of 476-530, and 175 lines in the 534-585 nm range. The new LFC atlas improves the accuracy of individual lines by a significant factor reaching a mean value of about 10 m/s. The LFC--based solar line wavelengths are essentially free of major instrumental effects and provide a reference for absolute solar line positions. We suggest that future LFC observations could be used to trace small radial velocity changes of the whole solar photospheric spectrum in connection with the solar cycle and for direct comparison with the predicted line positions of 3D radiative hydrodynamical models of the solar photosphere.Comment: Accept on the 15th of October 2013. 9 pages, 10 figures. ON-lINE data A&A 201

    Kinetic-energy release in Coulomb explosion of metastable C3H52+

    Get PDF
    C3H52+, formed by electron impact ionization of propane, undergoes metastable decay into C2H2++CH3+. We have monitored this reaction in a magnetic mass spectrometer of reversed geometry that is equipped with two electric sectors (BEE geometry). Three different techniques were applied to identify the fragment ions and determine the kinetic-energy release (KER) of spontaneous Coulomb explosion of C3H52+ in the second and third field free regions of the mass spectrometer. The KER distribution is very narrow, with a width of about 3% [root-mean square standard deviation]. An average KER of 4.58+/-0.15 eV is derived from the distribution. High level ab initio quantum-chemical calculations of the structure and energetics of C3H52+ are reported. The activation barrier of the reverse reaction, CH3++C2H2+ (vinylidene), is computed. The value closely agrees with the experimental average KER, thus indicating that essentially all energy available in the reaction is partitioned into kinetic energy. (C) 2003 American Institute of Physics

    A Study of the "toss Factor" in the Impact Testing of Cermets by the Izod Pendulum Test

    Get PDF
    The test method presented shows that the "toss energy" contributed by the apparatus for brittle materials is negligible. The total toss energy is considered to consist of two components. (a) recovered stored elastic energy and (b) kinetic energy contributed directly by the apparatus. The results were verified by high-speed motion pictures of the test in operation. From these photographs, velocities of tossed specimens were obtained and toss energy computed. In addition, impact energies of some titanium carbide base cermets and high-temperature alloys, as measured by the low-capacity Izod pendulum test, compare well with impact energies measured by the NACA drop test
    corecore