11 research outputs found

    Rac1 and Rac3 GTPases Regulate the Development of Hilar Mossy Cells by Affecting the Migration of Their Precursors to the Hilus

    Get PDF
    We have previously shown that double deletion of the genes for Rac1 and Rac3 GTPases during neuronal development affects late developmental events that perturb the circuitry of the hippocampus, with ensuing epileptic phenotype. These effects include a defect in mossy cells, the major class of excitatory neurons of the hilus. Here, we have addressed the mechanisms that affect the loss of hilar mossy cells in the dorsal hippocampus of mice depleted of the two Rac GTPases. Quantification showed that the loss of mossy cells was evident already at postnatal day 8, soon after these cells become identifiable by a specific marker in the dorsal hilus. Comparative analysis of the hilar region from control and double mutant mice revealed that synaptogenesis was affected in the double mutants, with strongly reduced presynaptic input from dentate granule cells. We found that apoptosis was equally low in the hippocampus of both control and double knockout mice. Labelling with bromodeoxyuridine at embryonic day 12.5 showed no evident difference in the proliferation of neuronal precursors in the hippocampal primordium, while differences in the number of bromodeoxyuridine-labelled cells in the developing hilus revealed a defect in the migration of immature, developing mossy cells in the brain of double knockout mice. Overall, our data show that Rac1 and Rac3 GTPases participate in the normal development of hilar mossy cells, and indicate that they are involved in the regulation of the migration of the mossy cell precursor by preventing their arrival to the dorsal hilus

    Molecular genetics of vestibular organ development

    Get PDF

    NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection

    No full text
    Induced expression of neuroprotective genes is essential for maintaining neuronal integrity after stressful insults to the brain. Here we show that NR4A nuclear orphan receptors are induced after excitotoxic and oxidative stress in neurons, up-regulate neuroprotective genes, and increase neuronal survival. Moreover, we show that NR4A proteins are induced by cAMP response element binding protein (CREB) in neurons exposed to stressful insults and that they function as mediators of CREB-induced neuronal survival. Animals with null mutations in three of six NR4A alleles show increased oxidative damage, blunted induction of neuroprotective genes, and increased vulnerability in the hippocampus after treatment with kainic acid. We also demonstrate that NR4A and the transcriptional coactivator PGC-1α independently regulate distinct CREB-dependent neuroprotective gene programs. These data identify NR4A nuclear orphan receptors as essential mediators of neuroprotection after exposure to neuropathological stress
    corecore