8 research outputs found

    Pathways towards a sustainable future envisioned by early-career conservation researchers

    Get PDF
    Scientists have warned decision-makers about the severe consequences of the global environmental crisis since the 1970s. Yet ecological degradation continues and little has been done to address climate change. We investigated early-career conservation researchers' (ECR) perspectives on, and prioritization of, actions furthering sustainability. We conducted a survey (n = 67) and an interactive workshop (n = 35) for ECR attendees of the 5th European Congress of Conservation Biology (2018). Building on these data and discussions, we identified ongoing and forthcoming advances in conservation science. These include increased transdisciplinarity, science communication, advocacy in conservation, and adoption of a transformation-oriented social-ecological systems approach to research. The respondents and participants had diverse perspectives on how to achieve sustainability. Reformist actions were emphasized as paving the way for more radical changes in the economic system and societal values linked to the environment and inequality. Our findings suggest that achieving sustainability requires a strategy that (1) incorporates the multiplicity of people's views, (2) places a greater value on nature, and (3) encourages systemic transformation across political, social, educational, and economic realms on multiple levels. We introduce a framework for ECRs to inspire their research and practice within conservation science to achieve real change in protecting biological diversity

    Site types revisited : comparison of traditional Russian and Finnish classification systems for European Boreal forests

    Get PDF
    doi: 10.1111/avsc.12525Questions Forest classifications are tools used in research, monitoring, and management. In Finland, the Cajanderian forest site type classification is based on the composition of understorey vegetation with the assumption that it reflects in a predictable way the site's productive value. In Russia, the Sukachevian forest classification is similarly based on understorey vegetation but also accounts for tree species, soil wetness, and paludification. Here we ask whether Cajander's and Sukachev's forest types are effectively the same in terms of species composition, site productivity, and biodiversity. Location Boreal forests on mineral soils in Finland and the Russian part of Fennoscandia. Methods We use vegetation and soil survey data to compare the Cajanderian and the Sukachevian systems in terms of the understorey community composition (that is supposed to define them), soil fertility and tree productivity (that they are expected to indicate), and biodiversity (that is of interest for conservation purposes). We create and employ class prediction models to divide Russian and Finnish sites into Cajander's and Sukachev's types, respectively, based on vegetation composition. We perform cross-comparisons between the two systems by non-metric multidimensional scaling ordination and statistical tests. Results Within both systems, the site types formed similar, meaningful gradients in terms of the studied variables. Certain site types from the two systems were largely overlapping in community composition and arranged similarly along the fertility gradient and may thus be considered comparable. Conclusions The Cajanderian and the Sukachevian systems were both developed in the European boreal zone but differ in terms of the exact rules by which site types are determined. Our results show that analogous types between the systems can be identified. These findings aid in endeavours of technology and information transfer between Finnish and Russian forests for the purposes of basic or applied ecological research and forest management.Peer reviewe
    corecore