2,340 research outputs found

    Can Universe Experience Many Cycles with Different Vacua ?

    Full text link
    Recently, the notion that the number of vacua is enormous has received increased attentions, which may be regarded as a possible anthropical explanation to incredible small cosmological constant. Further, a dynamical mechanisms to implement this possibility is required. We show in an operable model of cyclic universe that the universe can experience many cycles with different vacua, which is a generic behavior independent of the details of the model. This might provide a distinct dynamical approach to an anthropically favorable vacuum.Comment: RevTex, 10 pages, 4 eps figures, accepted by PRD(R), new title and changes in the text to match publicatio

    One-Step Synthesis of Graphene Oxide-Polyamidoamine Dendrimer Nanocomposite Hydrogels by Self-Assembly

    Get PDF
    Graphene oxide (GO)-polyamidoamine (PAMAM) dendrimer nanocomposite hydrogels were prepared through a one-step synthesis by mixing a GO suspension and a PAMAM solution at varying ratios of GO to PAMAM. The materials self-assembled into physically cross-linked networks, mainly driven by electrostatic interactions between the oppositely charged GO nanosheets and PAMAM dendrimer. The chemical structure of PAMAM dendrimer was studied by mass spectrometry, nuclear magnetic resonance spectroscopy, and potentiometric titration. The structure and properties of GO-PAMAM nanocomposite hydrogels were investigated by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and rheometry. The nanocomposite hydrogels exhibited a relatively high mechanical performance with a storage modulus of up to 284 kPa, as well as self-healing property, owing to their reversible and multiple physical cross-links. These hydrogels may be further developed for biomedical applications

    Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Get PDF
    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal patterns of winter ecosystem respiration (Reco) of northern ecosystems are poorly understood. For this reason, we analyzed eddy covariance flux data from 57 ecosystem sites ranging from ~35° N to ~70° N. Deciduous forests were characterized by the highest winter Reco rates (0.90 ± 0.39 g C m-2 d-1), when winter is defined as the period during which daily air temperature remains below 0 °C. By contrast, arctic wetlands had the lowest winter Reco rates (0.02 ± 0.02 g C m-2 d-1). Mixed forests, evergreen needle-leaved forests, grasslands, croplands and boreal wetlands were characterized by intermediate winter Reco rates (g C m-2 d-1) of 0.70(±0.33), 0.60(±0.38), 0.62(±0.43), 0.49(±0.22) and 0.27(±0.08), respectively. Our cross site analysis showed that winter air (Tair) and soil (Tsoil) temperature played a dominating role in determining the spatial patterns of winter Reco in both forest and managed ecosystems (grasslands and croplands). Besides temperature, the seasonal amplitude of the leaf area index (LAI), inferred from satellite observation, or growing season gross primary productivity, which we use here as a proxy for the amount of recent carbon available for Reco in the subsequent winter, played a marginal role in winter CO2 emissions from forest ecosystems. We found that winter Reco sensitivity to temperature variation across space (QS) was higher than the one over time (interannual, QT). This can be expected because QS not only accounts for climate gradients across sites but also for (positively correlated) the spatial variability of substrate quantity. Thus, if the models estimate future warming impacts on Reco based on QS rather than QT, this could overestimate the impact of temperature change

    Loop quantum gravity effects on inflation and the CMB

    Get PDF
    In loop quantum cosmology, the universe avoids a big bang singularity and undergoes an early and short super-inflation phase. During super-inflation, non-perturbative quantum corrections to the dynamics drive an inflaton field up its potential hill, thus setting the initial conditions for standard inflation. We show that this effect can raise the inflaton high enough to achieve sufficient e-foldings in the standard inflation era. We analyze the cosmological perturbations generated when slow-roll is violated after super-inflation, and show that loop quantum effects can in principle leave an indirect signature on the largest scales in the CMB, with some loss of power and running of the spectral index.Comment: revtex4, 5 pages, 3 figures, significant improvements in explanation of quantization and perturbation issues; version to appear Classical and Quantum Gravit

    Assisted Tachyonic Inflation

    Full text link
    The model of inflation with a single tachyon field generates larger anisotropy and has difficulties in describing the formation of the Universe . In this paper we consider a model with multi tachyon fields and study the assisted inflationary solution. Our results show that this model satisfies the observation.Comment: 5 pages, no figures, a revised version and reference adde

    The sensitivity of satellite solar‐induced chlorophyll fluorescence (SIF) to meteorological drought

    Get PDF
    Solar‐induced chlorophyll fluorescence (SIF) could provide information on plant physiological response to water stress (e.g., drought). There are growing interests to study the effect of drought on SIF. However, to what extent SIF responds to drought and how the responses vary under different precipitation, temperature and potential evapotranspiration conditions are not clear. In this regard, we evaluated the relationship between satellite‐based SIF product and four commonly used meteorological drought indices (Standardized Precipitation‐Evapotranspiration Index, SPEI; Standardized Precipitation Index, SPI; Temperature Condition Index, TCI; and Palmer Drought Severity Index, PDSI) under diverse climate regions in the continental United States. The four drought indices were used because they estimate meteorological drought conditions from either single or combined meteorological factors such as precipitation, temperature, and potential evapotranspiration, representing different perspectives of drought. The relationship between SIF and meteorological drought varied spatially and differed for different ecosystem types. The high sensitivity occurred in dry areas characterized by a high mean annual growing season temperature and low vegetation productivity. Through random forest regression analyses, we found that temperature, gross primary production, precipitation, and land cover are the major factors affecting the relationships between SIF and meteorological drought indices. Taken together, satellite SIF is highly sensitive to meteorological drought but the high sensitivity is constrained to dry regions

    Inflationary universe in loop quantum cosmology

    Full text link
    Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.Comment: 21 pages, 4 figures; accepted for publication in JCA

    Inflationary Attractor in Braneworld Scenario

    Full text link
    We demonstrate the attractor behavior of inflation driven by a scalar field or a tachyon field in the context of recently proposed four-dimensional effective gravity induced on the world-volume of a three-brane in five-dimensional Einstein gravity, and we obtain a set of exact inflationary solutions. Phase portraits indicate that an initial kinetic term decays rapidly and it does not prevent the onset of inflation. The trajectories more rapidly reach the slow-roll curve than in the standard cosmology.Comment: 7 pages, 8 figures, RevTeX, to appear in Phys. Rev. D69 (2004
    corecore