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Abstract 

Solar-induced chlorophyll fluorescence (SIF) could provide information on plant 

physiological response to water stress (e.g., drought). There are growing interests to study the 

effect of drought on SIF. However, to what extent SIF responds to drought and how the 

responses vary under different precipitation, temperature and potential evapotranspiration 

conditions are not clear. In this regard, we evaluated the relationship between satellite-based 

SIF product and four commonly used meteorological drought indices (Standardized 

Precipitation-Evapotranspiration Index, SPEI; Standardized Precipitation Index, SPI; 

Temperature Condition Index, TCI; and Palmer Drought Severity Index, PDSI) under diverse 

climate regions in the continental United States. The four drought indices were used because 

they estimate meteorological drought conditions from either single or combined 

meteorological factors such as precipitation, temperature, and potential evapotranspiration, 

representing different perspectives of drought. The relationship between SIF and 

meteorological drought varied spatially and differed for different ecosystem types. The high 

sensitivity occurred in dry areas characterized by a high mean annual growing season 

temperature and low vegetation productivity. Through random forest regression analyses, we 

found that temperature, gross primary production, precipitation, and land cover are the major 

factors affecting the relationships between SIF and meteorological drought indices. Taken 

together, satellite SIF is highly sensitive to meteorological drought but the high sensitivity is 

constrained to dry regions. 
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1 Introduction 

Drought is one of the least understood natural hazards that can have devastating 

impacts on agriculture, environment and social economics in many parts of the increasingly 

globalized world [Mishra et al., 2010; Sheffield et al., 2012]. Drought occurs virtually in all 

climatic zones and the potential increase of drought frequency and severity due to climate 

change highlights the importance of a better understanding of drought to both policymakers 

and the scientific community [Dai, 2011; Griggs et al., 2002; Hao et al., 2017; Van Loon et 

al., 2016].  

Over the last decades, satellite remote sensing technology has been proved to be a 

useful tool for drought monitoring since it could provide continuous observations for drought 

characterizations at regional to global scales, especially for regions with limited in-situ 

observations [Jiao et al., 2019; Jiao et al., 2016; Rhee et al., 2010; Zhou et al., 2012]. 

Satellite observations could also be applied to estimate the drought impact on ecosystems by 

assessing the photosynthetic process of plants since water stress can change plants’ 

photosynthetic capacity [AghaKouchak et al., 2015]. Large-scale remotely sensed drought 

estimation often relies on optical, near-infrared (NIR), thermal and microwave reflectance 

observations. For example, satellite-based vegetation indices (VIs) have been widely used for 

detecting the severity and impact of drought globally through assessing the water-stress 

related vegetation conditions [Asner et al., 2010; Di et al., 1994; Mishra et al., 2010; Myneni 

et al., 1989; Singh et al., 2003; Tate et al., 2000; Tucker et al., 1987; Van Loon et al., 2016]. 

Some of the research indicated that VIs are good indicators to monitor drought [Chang et al., 

2018; Ji et al., 2003; Kogan, 1997; Liu et al., 1996; L Zhang et al., 2017]. However, other 

studies have shown that VIs should be used with caution for drought monitoring, as they fail 

to capture rapid changes in drought responses since these indices are not directly linked to 

photosynthetic functioning [Dobrowski et al., 2005; Sun et al., 2015].  

Solar-induced fluorescence (SIF) is the fluorescence emission from plant chlorophyll 

as 1-2% of the energy absorbed by chlorophyll is re-emitted at longer wavelengths as 

fluorescence during the light reactions process of photosynthesis [Meroni et al., 2009]. In this 

regard, SIF is considered to have a more close relationship to the functional status of 

photosynthetic machinery than VIs [Meroni et al., 2009]. Satellite-based SIF provides a new 

method for observing vegetation function from space [Guanter et al., 2007; Guanter et al., 

2012; Joiner et al., 2013; Joiner et al., 2011; Yang et al., 2015]. The main applications of 

satellite SIF products are to estimate gross primary production (GPP), light use efficiency 
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(LUE), vegetation photosynthetic capacity and crop productivity [Damm et al., 2010; 

Frankenberg et al., 2011; Guan et al., 2016; Guanter et al., 2014; Liu et al., 2010; Pérez‑

Priego et al., 2015].  

In recent years, researchers began to explore the impacts of drought on the ground 

observed SIF at local scales and satellite SIF at the regional scales. The results implied that 

SIF may have the potential to monitor the drought impacts on vegetation dynamics [Sun et 

al., 2015; Wang et al., 2016; Yoshida et al., 2015]. Research indicated that SIF anomaly, 

which is the departure of SIF from the corresponding multiyear mean monthly value, could 

reasonably capture the spatial and temporal dynamics of drought severity [Sun et al., 2015]. 

In these research work, soil moisture was used to indicate vegetation water stress and was 

correlated to SIF anomaly. This is because soil water deficit will lead to the closure of plant 

stomata and the reduction of transpiration and photosynthesis, which consequently limit plant 

function and decrease SIF signal [Sun et al., 2015; Yoshida et al., 2015]. Recent studies also 

indicated that site-observed SIF performs better for early drought detection compared with 

VIs such as Normalized Difference Vegetation Index (NDVI) [Liu et al., 2018a; Liu et al., 

2018b]. However, the sensitivity of satellite SIF to the drought-related environmental 

variables is complicated and SIF anomaly is not responsive to soil water deficit alone. The 

change of vapor pressure deficit (VPD), LUE, fraction of photosynthetically active radiation 

(fPAR), and fluorescence yield under drought conditions have also been shown affecting the 

SIF anomaly [Sun et al., 2015; Yoshida et al., 2015]. In addition, SIF dynamics could be 

affected by some other biotic and abiotic factors such as plant functional types, temperature, 

and evapotranspiration [Porcar-Castell et al., 2014].  

Drought is a complex phenomenon which associated with multiple aspects (e.g., low 

relative soil moisture, precipitation deficiency, and high temperature) [Hao et al., 2015]. 

Apart from using soil moisture to represent drought severity, meteorological drought indices, 

which are based on climate variables such as temperature, precipitation and potential 

evapotranspiration (PET), are among the most commonly used drought indices to indicate 

drought severity, onset, and duration. However, even if the meteorological drought indices 

indicate that there is a drought, the vegetation may not necessarily experience water stress 

and decreased SIF signal. To what extent satellite SIF responds to meteorological drought, 

and how the responses vary under different climatic conditions remain unclear. In this study, 

we characterize and quantify the relationships between GOME-2 derived 0.5° spatial-

resolution SIF dataset and the four most commonly used meteorological drought indices 
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(Standardized Precipitation-Evapotranspiration Index, SPEI; Standardized Precipitation 

Index, SPI; Temperature Condition Index, TCI; Palmer Drought Severity Index, PDSI) in 

3,023 counties from diverse climate regions over the continental United States (CONUS) 

during the growing season in the years of 2007 to 2014. We aim to address the following 

questions: (1) What are the spatial patterns of the relationship between meteorological 

drought indices and SIF anomaly in different climate regions? (2) Is there any difference in 

SIF sensitivity to different meteorological drought indices estimated from temperature, 

precipitation, and PET? (3) What are the main factors influencing the spatiotemporal patterns 

of the relationship between SIF and meteorological drought indices at the regional scale? (4) 

Under what environmental conditions satellite SIF has high correlations to meteorological 

drought indices?  

2. Data and methodology

2.1 SIF products 

Satellite measurements of SIF from chlorophyll are based on the fact that a small 

fraction of the energy absorbed by vegetation is emitted as fluorescence during the process of 

photosynthesis. The fluorescence emission has red and far-red spectrum peaks (near 685 and 

740 nm) and most of the satellite SIF measurements have been in the far-red spectral region 

[Yoshida et al., 2015]. The amount of SIF at the top-of-canopy is frequently expressed as:  

𝑆𝐼𝐹 = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 × 𝐿𝑈𝐸𝐹(𝜆) × 𝑓𝑒𝑠𝑐(𝜆), (1) 

where PAR is the flux of photosynthetically active radiation received, fPAR is the fraction of 

PAR, 𝐿𝑈𝐸𝐹(𝜆) can be considered as light use efficiency for SIF and 𝑓𝑒𝑠𝑐(𝜆) is the fraction of

SIF photons escaping from the canopy to space. This expression of SIF is similar to LUE 

based GPP model and is widely used by the remote sensing community [Sun et al., 2015; 

Yang et al., 2015; Yoshida et al., 2015]. There are various types of satellite SIF products with 

different retrieval methods: SIF derived from GOME-2, Greenhouse gases Observing 

SATellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), TROPOspheric Monitoring 

Instrument (TROPOMI),  and Scanning Imaging Absorption Spectrometer for 

Atmospheric Chartography (SCIAMACHY) [Frankenberg et al., 2014; Guanter et al., 2007; 

Guanter et al., 2012; Joiner et al., 2013; Joiner et al., 2011; Köhler et al., 2018; Sun et al., 

2018]. As SCIAMACHY derived SIF product ended in 2012, TROPOMI derived SIF product 

has only covered a short observation period (launched on 13 October 2017), and other 
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datasets could not provide a full spatial mapping of regional to global scale [Frankenberg et 

al., 2014; Guanter et al., 2016; Köhler et al., 2018; Köhler et al., 2015], this study only 

focuses on GOME-2 derived SIF product.  

GOME-2 based SIF product with a spatial resolution of 0.5° latitude × 0.5° longitude 

(denoted as SIF hereafter) was extracted by Joiner et al. [2013] based on the GOME-2 data 

onboard the MetOp-A satellite. Level 3 of version 26 monthly product was used in this study. 

The GOME-2 based SIF used in this study has a morning overpass time near 09:30 local 

time. The detailed information about 0.5° spatial resolution GOME-2 based SIF product is 

available at https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/.  

Since most vegetation in the northern regions of the United States is dormant in the 

winter, our analysis focused primarily on the growing season from April to October 

(representing the period of active photosynthesis activities) between 2007 and 2014. During 

the study period, frequent drought events occurred over the CONUS. For example, in 2008 

and 2009, much of south and south-central Texas experienced exceptional drought [Nielsen-

Gammon, 2011]. California also experienced a multiyear exceptional drought which peaked 

in 2007-2009 and 2012-2013 [Griffin et al., 2014; Williams et al., 2015]. The severe drought 

in California also contributed to the extreme severity of the California wildfires [Keeley et al., 

2009]. The California drought shifted east causing large parts of Southwest and Texas 

suffered a harsh drought in the summer of 2011 [Neitsch et al., 2011]. In 2012, much of the 

United States experienced one of the worst droughts in the history of the country, creating the 

2012 North American drought.  

2.2 Meteorological drought indices 

Standardized Precipitation–Evapotranspiration Index (SPEI), Standardized 

Precipitation Index (SPI), Temperature Condition Index (TCI), and Palmer Drought Severity 

Index (PDSI) were used as meteorological drought reference data in this study. SPEI, SPI, 

TCI, and PDSI are among the most commonly used meteorological drought indices. SPI 

characterizes meteorological drought based on precipitation deficiency since it only relies on 

the historical distribution of precipitation to quantify the wet and dry levels [McKee et al., 

1993]. The SPI is simple to calculate and reflects drought conditions over different timescales 

and recommended by the World Meteorological Organization (WMO) as a global measure of 

meteorological drought [Hayes et al., 1999]. TCI characterizes meteorological drought based 

on temperature anomaly and has been used for drought estimation by various studies 

https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/


© 2019 American Geophysical Union. All rights reserved. 

[Bhuiyan et al., 2006; Kogan, 1995; Kogan, 1997; Unganai et al., 1998]. SPEI characterizes 

meteorological drought based on the historical distribution of precipitation deficiency relative 

to atmospheric water demand (precipitation minus potential evapotranspiration) [Vicente-

Serrano et al., 2010]. SPEI has been widely used as the standard drought index by various 

studies for evaluating different drought monitoring methods since it is statistically robust and 

its multi-scalar characteristics enable identification of different drought types and impacts in 

the context of global warming [Banimahd et al., 2013; C Hao et al., 2015; Hao et al., 2014; 

Rajsekhar et al., 2015]. PDSI [Palmer, 1965] accounts for the balance of precipitation, 

temperature, and PET [Dai, 2011; Wang et al., 2018].  Table 1 lists the detailed information 

about the four metrological drought indices. 

Drought indices of a certain time-scale refer to the cumulative water deficit over the 

preceding months [McKee et al., 1993; Vicente-Serrano et al., 2010; Zhao et al., 2017]. 

Different time-scales of SPI and SPEI were used in this study to explore the sensitivity of SIF 

to cumulative meteorological drought conditions ranging from 1 month to 12 months. 

Specifically, 1-, 2-, 3-, 4, 5-, 6-, 7-, 9-, and 12-month time-scale SPI and SPEI were used in 

this study. 

The 0.5
o

monthly raster SPI was obtained from 

https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-spi; a self-

calibrating version of PDSI, was obtained from 

http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html, and the SPEI V2.5 dataset (monthly 

data with 0.5
o
 spatial resolution)  was obtained at http://spei.csic.es/database.html. Since daily

SPEI, PDSI and SPI data covering the CONUS are not readily available, this study examines 

the monthly SIF responses to meteorological drought. Satellite-based TCI was calculated 

based on the MODIS Land Surface Temperature (LST) product (MOD11A2) using the 

minimum and maximum LST for each month (TCIi = (LSTi,max – LSTi) / (LSTi,max – 

LSTi,min), where LSTi,max and LSTi,min are the maximum and minimum LST for month i from 

different years). Eight-day of MODIS LST was composited into monthly LST weighted by 

the number of days recorded in each month. MODIS LST product was obtained from the 

Land Processes Distributed Active Center (LPDAAC; http://lpdaac.usgs.gov/). 

In this study, we used the county as the basic geographic unit to reduce the effect of 

low-quality SIF data or missing SIF observations in some pixels on our assessments. We 

excluded urban, barren and water dominated counties and focused on 3,023 vegetation 

covered counties in our study. In the county-level statistics, given that some small counties 

http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html
http://spei.csic.es/database.html
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are smaller than the smallest grid cell for the raster SIF data and some large counties in the 

west may contain multiple grid cells, we divided each SIF grid cell into 10,000 small grid 

cells without changing the value, then we used the mean value of these small grid cells 

located in the corresponding counties to represent the county value. The mean SPEI, SPI, TCI 

and PDSI values were also calculated for each county. In order to evaluate the sensitivity of 

satellite SIF to meteorological drought at the county level, we firstly calculated the mean 

SPEI, SPI, TCI and PDSI values in each county, then correlated these values to the mean SIF 

anomaly values in each county. We compared the sensitivity of SIF for each over the 

CONUS.  

2.3 Ancillary data 

In order to investigate the factors modulating the sensitivity of the satellite SIF to 

meteorological drought as comprehensive as possible, ten additional datasets were used as the 

explanatory covariates to explain the spatial variations in the relationships between satellite 

SIF product and meteorological drought indices. These additional datasets include climate 

data (historical mean annual growing season temperature and historical mean annual growing 

season precipitation), land use and land cover (LULC) data, historical mean annual growing 

season vegetation gross primary production (GPP), digital elevation model (DEM) data and 

soil property data (soil permeability, hydrology group, water holding capacity and soil 

drainage).     

In this study, LULC information in each county was obtained from National Land 

Cover Database 2011 (NLCD 2011), which are available at the U.S. Geological Survey 

National Land Cover Data (NLCD) Institute (http://landcover.usgs.gov/). The majority of the 

land cover pixel was used to represent the county’s LULC type. Each county’s majority 

LULC type was calculated using Zonal statistical function in the ArcGIS software. Counties 

with LULC types of non-vegetation were excluded. The gridded historical mean annual 

precipitation was calculated for each county using seven years (2007-2014) growing season 

(April to October) data obtained from the Oregon State University PRISM group 

(http://prism.oregonstate.edu). Mean annual temperature in each county was obtained using 

2007-2014 growing season (April to October) MODIS land surface temperature (LST, 

MOD11A2, with 8-day temporal resolution and 1-km spatial resolution) data. Mean value of 

the gridded time series of MODIS LST was calculated for each county. For vegetation data, 

we calculated the mean annual GPP using MODIS GPP product (MOD17A2, with 8-day 

http://landcover.usgs.gov/
http://prism.oregonstate.edu/
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temporal resolution and 1-km spatial resolution) for the growing season from the year of 

2007-2014. Detailed information about these vegetation and land surface temperature 

datasets are available at https://modis.gsfc.nasa.gov/data/. Gridded DEM for each county is 

obtained using Space Shuttle Radar Topography Mission (SRTM) product. Soil properties 

(permeability, water table depth, available water holding capacity, hydrologic groups, and 

soil drainage) in each county were derived from the STATSGO soil database which was 

downloaded from the Center for Environmental Informatics at Pennsylvania State University 

(http://www.soilinfo.psu.edu/). The mean value of the gridded precipitation, temperature, 

GPP and soil data was used to represent the county’s precipitation, temperature, GPP and soil 

properties. Similar with LULC data, each county’s mean precipitation, temperature, GPP, and 

soil property values were calculated using Zonal statistical function in the ArcGIS software. 

2.4 Calculation of SIF anomaly 

The z-score was used to represent the anomaly of GOME-2 SIF data from 2007 to 

2014. The z-score of SIF anomaly was calculated as 

𝐴𝑗,𝑖 =
𝑆𝐼𝐹𝑗,𝑖−𝑆𝐼𝐹𝑗̅̅ ̅̅ ̅̅

𝜎
,     (2) 

where 𝐴𝑗,𝑖 denotes SIF anomaly for the month j in year i. 𝑆𝐼𝐹𝑗̅̅ ̅̅ ̅ denotes the averaged SIF of

month j over the year 2007-2014; 𝜎 is the standard deviation of SIF for month j over the year 

2007-2014.  The SIF anomaly was compared with SPEI, SPI, TCI and PDSI in different 

counties across the CONUS. The Spearman rank correlation coefficients (r-values) between 

the SIF anomaly and four meteorological drought indices (SPEI, SPI, TCI, and PDSI) were 

used to evaluate the sensitivity of satellite SIF to the meteorological drought conditions in 

this study. High correlation coefficients indicate high sensitivity and vice versa.  

2.5 Random forest regression 

In order to quantify the factors modulating the sensitivity of the satellite SIF to 

meteorological drought, the random forest regression model was used to examine the 

relationship between the satellite SIF drought sensitivity and explanatory covariates. Random 

forest regression is a non-parametric statistical method requiring no distributional 

assumptions on covariate in relation to the response variable [Breiman, 2001]. The random 

forest algorithm here uses 1000 binary decision trees.  In standard trees, each node is split 

using the best split among all variables. The explanatory covariates used are: historical mean 

annual growing season temperature, mean annual growing season precipitation, LULC, mean 

https://modis.gsfc.nasa.gov/data/
http://www.soilinfo.psu.edu/
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annual growing season GPP, DEM, mean soil moisture, soil permeability, hydrology group, 

water holding capacity, and soil drainage. With the random forest regression model, variable 

importance ranking for variable selection was also calculated. The variable importance 

measures how much the error increases if we scramble the values of a variable. Larger error 

before and after permutation means larger importance of the variable in the forest and 

contribute more to predictive accuracy than other variables [Breiman, 2001].  

3 Results 

3.1 Temporal and spatial patterns of the correlations between SIF and meteorological 

drought indices  

The SIF anomalies were compared against each of the four meteorological drought 

indices, specifically: PDSI, TCI, SPI (1-, 2-, 3-, 4-, 5-, 6-, 7-, 9- and 12-month time-scales) 

and SPEI (1-, 2-, 3-, 4-, 5-, 6-, 7-, 9- and 12-month time-scales) in all 3,023 counties across 

the CONUS. SIF has the highest correlation with PDSI (r =0.257) followed by TCI with a 

similar value (r=0.249). SIF has similar correlations with SPI and SPEI under different time-

scales and the correlations were generally lower than those with PDSI and TCI. Over the 

CONUS, there was significant spatial variability in the correlations between satellite SIF and 

SPEI, the r-values ranged from -0.4 to 0.9 (Figure 1). This was similar to the correlation 

ranges between satellite SIF and SPI (Figure 2), TCI, and PDSI (Figure 3). Generally, SIF 

showed similar spatial variability and their correlations with different meteorological drought 

indices of different time-scales were uniform (Figures 1-3). There were much stronger 

positive correlations between SIF and meteorological drought indices in the counties in the 

middle CONUS than counties in the eastern and western CONUS. For example, for the r-

values between SIF and SPEI-3, SPI-3 and PDSI (denotes as RSIF-SPEI03, RSIF-SPI03, and RSIF-

PDSI) in Figures 1-3, many of the counties in the southwestern CONUS (e.g., some counties in 

Nevada, California, and Arizona) had RSIF-SPEI03, RSIF-SPI03 and RSIF-PDSI close to zero and p-

value > 0.05, whereas most counties in the north-central and south-central CONUS (e.g., 

counties in Texas, Oklahoma, Kansas, Dakota, and Nebraska) had RSIF-SPEI03, RSIF-SPI03 and 

RSIF-PDSI exceeding 0.75 and p-value <0.05. Besides the significant positive correlations in the 

middle of CONUS, there are significantly negative correlations between SIF and 

meteorological drought indices mainly in the Pacific Northwest and Northeast regions.  

Vegetation across the CONUS is susceptible to both energy and water constraints. 

The relative importance of these constraints differs along climate gradients and vegetation 



 

 

© 2019 American Geophysical Union. All rights reserved. 

water sensitivity also likely varies for different plant functional types. To this end, we 

evaluated the sensitivity of SIF to metrological drought for different ecosystem types. Figure 

3 (b) and (d) show the correlations between SIF and PDSI as well as between SIF and TCI, 

respectively, for different ecosystem types. Generally, SIF had higher positive correlations 

with PDSI and TCI for grassland and shrubland ecosystems than other ecosystem types. Most 

of the grassland and shrubland ecosystems only had positive correlations with PDSI and TCI. 

SIF had lowest positive correlations for deciduous and evergreen forests than other ecosystem 

types. The sensitivity of SIF to the meteorological indices of different ecosystem types were 

also different for different time-scales (Figures 4 and 5).  Pairwise t-test indicated that there 

were significant differences of the positive r-values between crop SIF and 1- to 4-month 

time-scale SPEIs, but there was no significant difference for the negative correlations. 

Deciduous forest and evergreen forest responded to different meteorological drought time-

scales differently. Deciduous forest SIF did not show significantly different correlations when 

correlated to SPEI from 2-month to 12-month time-scales, while the positive r-values of 

evergreen forest SIF and 1-, 2-, 3-, 7-, 9-, and 12-month SPEIs showed significant differences 

(p-value <0.05 in pairwise t-test). Within the 1-, 2-, 3-, 7-, 9-, and 12-month time-scales, 

along with the increasing time-scales, mean r-values between evergreen SIF and SPEIs 

became higher. Grassland SIF had only positive correlations for all the time-scales of SPI and 

2 to 12-month time-scales of SPEI. Comparing with different drought time-scales, grassland 

SIF had highest correlation to 3-month SPEI and longer term of meteorological drought did 

not significantly change grassland SIF sensitivity (Figure 4). Shrubland SIF had both positive 

and negative correlations with SPEI for the time-scale of 1 to 5 months and only positive 

correlations for the time-scale of 6 to 12 months. The positive correlations between shrubland 

SIF and SPEI increased when SPEI time scales increased from 1-month to 4-month. 

However, different from other ecosystems, there was a decrease of mean positive r-values 

when shrubland SIF correlated to SPEIs ranging from 6-month to 12-month time-scales. We 

found similar patterns of SIF sensitivity to different time-scales of SPI. The only exception is 

that there was different relationship of wetland SIF to SPEI and SPI. There was no significant 

difference between wetland SIF and SPIs for different time-scales but SPEI with time-scales 

longer than 4-months had higher positive correlations with wetland SIF.  

3.2 Driving forces of the observed spatial variability 

To examine the driving forces of the observed spatial variability in the relationships 

between the SIF anomaly and meteorological drought indices, ten independent variables 
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(described in section 2.3) were evaluated using random forest regression. Because of the 

similar spatial variability and magnitude in correlation coefficients between SIF and those 

meteorological drought indices of different time-scales, we chose to focus on the 

relationships between the SIF and SPEI-5, SPI-5, TCI and PDSI in our analysis.  

All the variables together explained 77.76% of the variation in the r-value between 

SIF and SPEI-5 (denotes as RSIF-SPEI05). In comparison, these ten independent variables 

explained 77.56%, 78.49%, and 78.68% of the variations in the r-values between SIF and 

SPI-5 (RSIF-SPI05), between SIF and TCI (RSIF-TCI), and between SIF and PDSI (RSIF-PDSI), 

respectively. The variable importance function in the random forest model was used to 

quantify the rank of how each variable modulates the variance of RSIF-SPEI05, RSIF-SPI05, RSIF-TCI 

and RSIF-PDSI. Figure 6 shows the rank of importance for the ten independent variables 

controlling the sensitivity of SIF to meteorological drought. Figure 6 shows each variable on 

the y-axis, and their importance on the x-axis, ordering from top-to-bottom as most to least 

important. The variable importance (x-axis value in Figure 6) is the difference in ‘Out of 

Bag’ [Breiman, 1996] prediction error before and after permutation. A larger variable 

importance value indicates that misspecification detracts from the predictive accuracy in the 

forest. Smaller variable importance value indicates the variable contributes less to the 

predictive accuracy [Ishwaran, 2007].  

The results showed that mean annual temperature was the most important variable in 

explaining the spatiotemporal distributions of r-value distributions (Figure 6). Less important 

but still of major influence was the mean annual growing season GPP. Mean annual growing 

season precipitation was the next significant variable. Compared with the factors described 

above, DEM, LULC and the soil conditions (soil drainage class, organic material, 

permeability, water holding capacity, and hydrologic group) were the less significant 

variables affecting the RSIF-SPEI05 distributions. Similar to RSIF-SPEI05, temperature appeared to 

be the most dominant driver for the spatial distribution of RSIF-SPI05, RSIF-TCI and RSIF-PDSI. 

Mean annual GPP and precipitation were the next top significant variables associated with 

the strength of RSIF-SPI05, RSIF-TCI and RSIF-PDSI. LULC was the fourth important factor.  Also, 

DEM and the soil conditions were the less significant variables (Figure 6).  

To demonstrate an environmental envelope for the sensitivity of satellite SIF to 

meteorological drought and show areas of high SIF sensitivity to meteorological drought, 

Figure 7 displays the dependence of SIF and meteorological drought index correlation on the 

top three independent environmental variables across a wide range of observed values. Since 
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PDSI, TCI, different time-scales of SPI and SPEI showed similar spatial variability and their 

correlations with SIF anomaly were uniform (Figure 1-3), we focused on the relationship 

between SIF anomalies and SPEI-5. The black points with p-value < 0.05 indicate the points 

with a statistically significant relationship between SIF and SPEI-5.  

In Figure 7, the blue and brown lines represent the thresholds of 90% and 80% of the 

counties with a significant correlation between SIF and SPEI-5, respectively. That is, for 

example, for the counties with mean annual growing season temperature higher than the blue 

line (i.e., >30.6°C), the percentage of counties with significant correlations between SIF and 

SPEI-5 (black points in Figure 7a) is more than 90% (all the points at the right side of the 

blue line in Figure 7a). That is, satellite SIF anomaly was sensitive to meteorological drought 

for areas with mean annual growing season temperature higher than 30.6 °C. Similarly, 

regions with mean annual growing season GPP less than 750 g C m
-2

 yr
-1

 or mean annual

growing season precipitation less than 700 mm were areas with high sensitivity of satellite 

SIF to meteorological drought. Figure 7d) -7f) displayed the suggested suitable areas for 

using satellite SIF to characterize meteorological drought based on 80% threshold in mean 

annual growing season temperature, GPP, and precipitation. Supplemental materials Figures 

S1 to S6 showed the detailed correlations between SIF and all the ten environmental 

variables.  

4 Discussion 

4.1 SIF sensitivity to different climate variables 

The correlation of SIF to meteorological drought indices not only reflects SIF 

response to drought stress but also reflects the sensitivity of SIF to different climate variables. 

For example, SPI is only based on the historical distribution of precipitation and high SPI 

could indicate wet conditions. Therefore, the correlation between SIF anomaly and SPI could 

potentially reflect the sensitivity of SIF to precipitation dynamics. Similarly, TCI is only 

based on temperature variable, the correlation between SIF anomaly and TCI could 

potentially indicate the sensitivity of SIF to temperature variations. SPEI represents 

meteorological drought using the combination of precipitation and PET. The correlation 

between SIF anomaly and SPEI indicates the sensitivity of SIF to the dynamics of 

precipitation deficiency relative to PET. Similarly, the correlation between SIF anomaly and 

PDSI indicates the sensitivity of SIF to the dynamics of water balance.  
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Consistent with the high correlation between SIF and TCI, variable importance from 

random forest regression also shows that temperature is the most important factor explaining 

the variance of SIF sensitivity to meteorological drought. Temperature has a significant 

positive correlation with RSIF-SPEI05, which means that there will be stronger SIF sensitivity to 

meteorological drought under higher temperature conditions. The reason could be that rising 

temperatures favorably influence vegetation activity and it is the main driver of many 

biological processes (such as enzyme-catalyzed reactions), which usually increase plant 

photosynthetic activity up to a certain point [Badeck et al., 2004; Karnieli et al., 2006]. It 

should be noted that those very high temperatures (>31.5 
o
C) decreases the sensitivity to

meteorological drought (Figure 7). This is may be because vegetation under extremely high 

temperatures will decrease enzyme-catalyzed reactions and photosynthetic activity [Mu et al., 

2007; Xiao et al., 2004; Zhao et al., 2005]. 

It is worth noting that although SIF is less sensitive to precipitation than to 

temperature, precipitation is still a very important climate variable affecting SIF dynamics. 

There is a significant correlation between SIF and SPI, and including PET into SPEI does not 

significantly improve the correlation with SIF. The negative relationship between the RSIF-

SPEI05 and mean annual growing season precipitation (Figure 7) is similar to previous studies 

using other vegetation indices for drought monitoring. For example, Vicente-Serrano [2007] 

and Quiring et al. [2010] showed that the correlations between the in-situ meteorological 

drought index (SPI) and satellite-based vegetation condition index (VCI) are generally higher 

in dry locations than in wet regions. In our study, most of the high positive correlations 

between SIF and meteorological drought indices located in the dryland while most of the high 

negative correlations were in wet regions (Figures 1-3). It is likely because in drylands where 

precipitation is the dominant factor for vegetation growth, precipitation is a key important 

factor for determining the vegetation dynamics [Wang et al., 2012], while in wet regions, 

additional precipitation does not change SIF signal significantly. In these regions, vegetation 

response to drought and moisture variations will be much more muted. In wet regions, there 

were more counties with significant negative r-values between SIF and TCI than between SIF 

and SPI (Figures 2-3). It may be because in wet regions, temperature other than precipitation 

is the dominant factor determining the vegetation dynamics.   
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4.2 SIF sensitivity to meteorological drought of different time scales and different 

ecosystem types 

Our results indicate that different ecosystem types have different SIF sensitivity to 

meteorological drought. In this study, shrubland mainly refers to areas dominated by 5 m tall 

shrubs and young trees; grassland refers to areas dominated by grammanoid or herbaceous 

vegetation [Homer et al., 2004]. Comparing with other ecosystems, shrubland, grassland, and 

cropland SIFs are more sensitive to short-term (1-month) meteorological drought indices, 

which indicates SIF could have fast response to meteorological drought for these ecosystem 

types. Grassland SIF only shows positive correlations to all the meteorological drought 

indices, which indicates decreasing of precipitation and increasing of temperature will 

decrease SIF values for grassland. The results also indicated that grassland SIF sensitivity 

does not significantly change for meteorological drought longer than 3-month time-scale. It 

means that grassland SIF will respond quite differently to 1-, 2-, and 3-month cumulative 

precipitation decrease or temperature increase but when the accumulation of precipitation 

decrease or temperature increase exceeds three months, grassland SIF will respond similarly. 

The positive correlation coefficients of cropland SIF and different time-scales of SPEI are 

similar to those between grassland SIF and SPEIs/SPIs. However, the negative correlation 

between cropland SIF and SPEI/SPIs indicates that meteorological drought could also 

increase crop SIF signal in some regions. Shrubland SIF generally has the highest positive 

correlation with all the meteorological drought indices across different time scales, and as the 

time-scale increase more counties have positive correlations. This indicates that shrubland 

SIF is also a fast response signal to meteorological drought conditions since it has high 

correlation with short-term SPI and SPEI (1-month time-scale). The negative correlation 

indicates that 1 to 7 month’s cumulative decreasing precipitation or increasing temperature 

could increase SIF values for some regions. When the cumulative precipitation decrease or 

temperature increase exceeds 6 or 7 months, it only decreases shrub SIF signals, but the 

sensitivity of shrubland SIF to longer time-scale meteorological drought also decreases. It 

indicates that shrubland may have self-regulating strategies to alleviate SIF decrease under 

long-term meteorological drought (e.g., > 7-month). It also should be noted that there is a 

different pattern between the SIF-SPI relationship and SIF-SPEI relationship. There are 

higher positive r-values of wetland SIF and long-term SPEI (4-12 months) than the positive r-

values of wetland SIF and long-term SPI (4-12 months). This is likely because in wetlands, 

the cumulative precipitation decrease is not the factor decreasing SIF signal and SIF signal 



© 2019 American Geophysical Union. All rights reserved. 

decrease is caused by the cumulative increase in potential evapotranspiration or high 

temperature beyond optimum vegetation growth threshold [Huang et al., 2019; Piao et al., 

2014].  

Spatially, the negative correlations in Pacific Northwest and Northeast regions are 

likely because these are wet regions and soil water is not limiting when meteorological 

drought occurs. Meteorological drought often occurs along with high temperature and low 

cloud cover, the increasing temperature and PAR during meteorological drought in these 

regions could increase satellite SIF values. It should be noted the heterogeneous pattern of the 

correlations in the Intermountain West may be due to data quality in this region. Due to the 

sparse coverage of vegetation in this region, there are many pixels without SIF data. Given 

the limited number of pixels in this region, the mean SIF pixel value of some counties may 

not reasonably reflect the large counties’ value and therefore cause some statistical 

uncertainties. In this regard, the application of satellite SIF to meteorological drought 

response in this region should be treated with caution. The significant correlations in the 

middle regions of CONUS indicated that SIF signal in these regions has high sensitivity to 

meteorological drought.  

Our results indicate that the overall correlations of SIF to 2-month time-scale of 

drought indices are significantly higher than the correlations between SIF and 1-month time-

scale drought indices. The overall sensitivity of SIF to 3-month time-scale meteorological 

drought is slightly higher than to 2-month time-scale meteorological drought. The possible 

reason for the overall lower correlation between SIF and 1-month drought indices than with 

longer term drought indices is that vegetation growth is controlled by soil moisture and 

changes in vegetation growth signal are buffered by soil water storage [Piao et al., 2003; 

Quiring et al., 2010]. The occurrence of meteorological drought does not always mean plant 

water stress. For some regions when early meteorological droughts occur, vegetation could 

still have access to sufficient soil water to maintain functions without experiencing water 

stress for a period of time. In fact, the relationships between soil moisture and different time-

scales of meteorological drought have been well documented. For example, Wang et al. 

[2015] indicated that there is a time-lag of soil moisture response to meteorological drought 

indices. It is shown that the SPEI of 1-3 month timescales has maximum correlations with 

soil moisture at soil depths of 0-5 cm, while SPEI of 9-12 month time scales has maximum 

correlations with soil moisture at soil depths of 90-100 cm.  
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4.3 Potential use of satellite SIF to study vegetation response to environmental 

stresses 

Satellite SIF is an emerging satellite retrieval product, which could provide 

measurements closely or directly related to plant photosynthetic activity. There are growing 

interests to examine the effects of drought on SIF in recent years. Our research indicates that 

SIF is highly sensitive to temperature variation in the short time-scale (e.g., 1 month). The 

high SIF sensitivity to temperature indicates the potential use of SIF to monitor plant heat 

stress. Recently, Song et al. [2018] shows that SIF has the ability to detect winter wheat early 

response to heat stress in the Indian Indo-Gangetic Plains when comparing with NDVI and 

EVI. Future research could focus on SIF sensitivities to heat stress over regional to global 

scales and explore the mechanisms of plant functions involving heat stress. In addition, 

because SIF has high sensitivity to temperature variations it has potential to investigate 

changes in plant photosynthetic activity under global warming. This is important because 

there are uncertainties using existing VIs to evaluate plant photosynthetic activity responses 

to warming due to saturation issue, background effect or sensor degradation [Gao et al., 

2000; Nicholson et al., 1994; Zhang et al., 2017]. 

With growing interests in satellite SIF, more satellite products at regional to global 

scale will become available such as TROPOMI SIF product with a global coverage [Köhler et 

al., 2018]. Future study can also take advantage of satellite SIF products extracted from 

satellite observation models such as high resolution global contiguous OCO-2 based SIF 

product [Yu et al., 2018]. In this study, we compared the original GOME-2 SIF product and 

downscaled high spatial resolution GOME-2 SIF product by [Duveiller et al., 2016], they 

showed a similar pattern when correlated to the meteorological drought indices (Figures S7-

S9).  

Our research analyzed the characteristics of SIF responses to meteorological drought. 

However, it should be noted that several factors could potentially affect the sensitivity 

analysis of SIF to meteorological drought. Firstly, we assessed the sensitivity of SIF to 

meteorological drought based on the Spearman rank correlation analysis between SIF 

anomalies and meteorological drought indices. However, correlation does not always imply 

causation. Ground-based SIF measurements would be valuable to examine the mechanisms in 

the future. In addition, this study analyzed data at the county level. Small counties may be 

smaller than the smallest SIF grid cell, and large counties in the west may contain multiple 

SIF grid cells. This may add uncertainties to our evaluation results. At the same time, 
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political boundaries, in general, and county boundaries, in particular, are commonly used for 

making drought-related decisions.  

5 Conclusions 

This study examines the spatial relationship between satellite SIF and four commonly 

used meteorological drought indices of different time-scales in different climate regions 

across the CONUS. We found that satellite SIF is more sensitive to meteorological drought 

through temperature effect than through precipitation and potential evapotranspiration effects. 

We also demonstrate that the sensitivity of satellite SIF response to meteorological drought 

varies significantly in different climate regions and for different ecosystem types. Grassland 

and shrubland SIF show higher sensitivity to meteorological drought than other ecosystem 

types. Grassland SIF responds quite differently to 1-, 2-, and 3-month cumulative 

precipitation decrease or temperature increase. However, when the accumulation of 

precipitation decrease or temperature exceeds three months, SIF responds similarly.  SIF is 

sensitive to meteorological drought only in climate regions with high growing season 

temperature, low growing season precipitation and low GPP. Among the environmental 

variables, mean annual growing season temperature is the most important determinant for the 

sensitivity of satellite SIF to meteorological drought.  
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Table 1 Summary of the meteorological drought indices used in this study. 

Drought 

index 

Required 

metrological factors 
Method Source 

SPI Precipitation 

Based on the historical 

precipitation occurrence 

probability distribution 

function 

[McKee et al., 1993] 

SPEI 

Potential 

evapotranspiration 

and precipitation 

Based on the historical 

deficiency of precipitation 

(P-PET) occurrence 

probability distribution 

function 

[Vicente-Serrano et al., 2010] 

TCI 
Land surface 

temperature (LST) 
Based on LST anomaly [Kogan, 1997] 

PDSI 

Precipitation, 

temperature, and 

potential 

evapotranspiration 

Based on water balance 

model 
[Palmer, 1965] 
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Figure 1. Spatial variations of the r-values between SIF and SPEI at 1-month (a), 2-month 

(b), 3-month (c), 4-month (d), 5-month (e), 6-month (f), 7-month (g), 9-month (h), 12-month 

(i) time scale. Counties with white color means insignificant correlations (p-value > 0.05) in

those counties. 
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Figure 2. Spatial variations of the r-values between SIF and SPI at 1-month (a), 2-month (b), 

3-month (c), 4-month (d), 5-month (e), 6-month (f), 7-month (g), 9-month (h), 12-month (i)

time scale. Counties with white color means insignificant correlations (p-value > 0.05) in 

those counties. 



 

 

© 2019 American Geophysical Union. All rights reserved. 

 

Figure 3. Spatial variations of the r-values between SIF and PDSI (a) as well as between SIF 

and TCI (c). Counties with white color means insignificant correlations (p-values > 0.05) in 

those counties. The correlations (r-value) between SIF and PDSI (b) as well as between SIF 

and TCI (d) for different ecosystem types. All the reported correlation coefficients are 

statistically significant. 
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Figure 4. The correlations (r-value) between SIF and SPEI under different time-scales for the 

ecosystem types of Cropland (a), deciduous forest (b), evergreen forest (c), Grassland (d), 

shrubland (e), and wetland (f). All the reported correlation coefficients are statistically 

significant.  
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Figure 5. The correlations (r-value) between SIF and SPI under different time-scales for the 

ecosystem types of cropland (a), deciduous forest (b), evergreen forest (c), grassland (d), 

shrubland (e), and wetland (f). All the reported correlation coefficients are statistically 

significant.  
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Figure 6. Variable importance of ten environmental variables for explaining the relationship 

between SIF anomaly and meteorological drought indices (SPEI, SPI, TCI and PDSI).  
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Figure 7. The dependence of SIF and 5-month SPEI correlation (RSIF-SPEI05) on mean annual 

temperature (a), GPP (b) and precipitation (c). The blue and brown lines represent the 

thresholds of 90% and 80% of the counties with significant relationship between SIF and 

SPEI, respectively. The blue colored regions represent the areas meet the 80% threshold 

regarding temperature (d), GPP (e) and precipitation (f) for SIF being sensitive to 

meteorological drought. Red points in (a)-(c) represent the counties with non-significant 

relationships between SIF and SPEI-5 (p>0.05) and black points represent counties with 

significant correlations (p<0.05).  

 


