302 research outputs found

    Point-contact study of the LuNi2B2C borocarbide superconducting film

    Full text link
    We present point-contact (PC) Andreev-reflection measurements of a superconducting epitaxial c-axis oriented nickel borocarbide film LuNi2B2C (Tc=15.9 K). The averaged value of the superconducting gap is found to be 2.6 +/-0.2 meV in the one-gap approach, whereas the two-gap approach results in 2.14+/-0.36 meV and 3.0+/-0.27 meV. The better fit of the Andreev-reflection spectra for the LuNi2B2C - Cu PC obtained by the two-gap approach provides evidence for multiband superconductivity in LuNi2B2C. For the first time, PC electron-phonon interaction (EPI) spectra have been measured for this compound. They demonstrate pronounced phonon maximum at 8.5+/-0.4meV and a second shallow one at 15.8+/-0.6 meV. The electron-phonon coupling constant estimated from the PC EPI spectra turned out to be small (~ 0.1), like in other superconducting rare-earth nickel borocarbides. Possible reasons for this are discussed.Comment: 5 pages, 5 figures, V2: figs. 2 & 5 captions are corrected, and new Refs. 4, 6, 12, 13, 14 are adde

    Іноземні інвестиції у контексті економічного зростання

    Get PDF
    The eruption of Mount Pinatubo in 1991 injected a large amount of SO2 into the stratosphere, which formed sulfate aerosols. Increased scattering and absorption of UV radiation by the enhanced stratospheric SO2 and aerosols decreased the amount of UV radiation reaching the troposphere, causing changes in tropospheric photochemistry. These changes affected the oxidizing capacity of the atmosphere and the removal rate of CH4 in the years following the eruption. We use the three-dimensional chemistry transport model TM5 coupled to the aerosol microphysics module M7 to simulate the evolution of SO2 and sulfate aerosols from the Pinatubo eruption. Their effect on tropospheric photolysis frequencies and concentrations of OH and CH4 is quantified for the first time. We find that UV attenuation by stratospheric sulfur decreased the photolysis frequencies of both ozone and NO2 by about 2% globally, decreasing global OH concentrations by a similar amount in the first 2 years after the eruption. SO2 absorption mainly affects OH primary production by ozone photolysis, while aerosol scattering also alters OH recycling. The effect of stratospheric sulfur on global OH and CH4 is dominated by the effect of aerosol extinction, while SO2 absorption contributes by 12.5% to the overall effect in the first year after the eruption. The reduction in OH concentrations causes an increase in the CH4 growth rate of 4 and 2 ppb/yr in the first and second years after the eruption, respectively, contributing 11 Tg to the 27 Tg observed CH4 burden change in late 1991 and early 1992. Key Points We modeled the effect of Pinatubo sulfur on tropospheric photochemistry SO2 absorption and aerosol extinction reduce tropospheric UV levels The tropospheric OH sink of CH4 decreased by 17.8 Tg during June 1991-June 199

    An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols

    Get PDF
    Studies of stratospheric solar geoengineering have tended to focus on modification of the sulfuric acid aerosol layer, and almost all climate model experiments that mechanistically increase the sulfuric acid aerosol burden assume injection of SO2. A key finding from these model studies is that the radiative forcing would increase sublinearly with increasing SO2 injection because most of the added sulfur increases the mass of existing particles, resulting in shorter aerosol residence times and aerosols that are above the optimal size for scattering. Injection of SO3 or H2SO4 from an aircraft in stratospheric flight is expected to produce particles predominantly in the accumulation-mode size range following microphysical processing within an expanding plume, and such injection may result in a smaller average stratospheric particle size, allowing a given injection of sulfur to produce more radiative forcing. We report the first multi-model intercomparison to evaluate this approach, which we label AM-H2SO4 injection. A coordinated multi-model experiment designed to represent this SO3- or H2SO4-driven geoengineering scenario was carried out with three interactive stratospheric aerosol microphysics models: the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM2) with the Whole Atmosphere Community Climate Model (WACCM) atmospheric configuration, the Max-Planck Institute's middle atmosphere version of ECHAM5 with the HAM microphysical module (MAECHAM5-HAM) and ETH's SOlar Climate Ozone Links with AER microphysics (SOCOL-AER) coordinated as a test-bed experiment within the Geoengineering Model Intercomparison Project (GeoMIP). The intercomparison explores how the injection of new accumulation-mode particles changes the large-scale particle size distribution and thus the overall radiative and dynamical response to stratospheric sulfur injection. Each model used the same injection scenarios testing AM-H2SO4 and SO2 injections at 5 and 25 Tg(S) yr-1 to test linearity and climate response sensitivity. All three models find that AM-H2SO4 injection increases the radiative efficacy, defined as the radiative forcing per unit of sulfur injected, relative to SO2 injection. Increased radiative efficacy means that when compared to the use of SO2 to produce the same radiative forcing, AM-H2SO4 emissions would reduce side effects of sulfuric acid aerosol geoengineering that are proportional to mass burden. The model studies were carried out with two different idealized geographical distributions of injection mass representing deployment scenarios with different objectives, one designed to force mainly the midlatitudes by injecting into two grid points at 30° N and 30° S, and the other designed to maximize aerosol residence time by injecting uniformly in the region between 30° S and 30° N. Analysis of aerosol size distributions in the perturbed stratosphere of the models shows that particle sizes evolve differently in response to concentrated versus dispersed injections depending on the form of the injected sulfur (SO2 gas or AM-H2SO4 particulate) and suggests that prior model results for concentrated injection of SO2 may be strongly dependent on model resolution. Differences among models arise from differences in aerosol formulation and differences in model dynamics, factors whose interplay cannot be easily untangled by this intercomparison. Copyright © 2022 Debra K. Weisenstein et al

    Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain

    Get PDF
    The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a “knot” structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus “untie” under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies

    Epitaxial growth and anisotropy of La(O,F)FeAs thin films deposited by Pulsed Laser Deposition

    Full text link
    LaFeAsO1-xFx thin films were deposited successfully on (001)-oriented LaAlO3 and MgO substrates from stoichiometric LaFeAsO1-xFx polycrystalline targets with fluorine concentrations up to x = 0.25 by PLD. Room temperature deposition and post annealing of the films yield nearly phase pure films with a pronounced c-axis texture and a strong biaxial in-plane orientation. Transport measurements show metallic resistance and onset of superconductivity at 11 K. Hc2(T) was determined by resistive measurements and yield Hc2 values of 3 T at 3.6 K for B||c and 6 T at 6.4 K for B||ab.Comment: 11 pages, 5 figure

    Acute free perforation of gall bladder encountered at initial presentation in a 51 years old man: a case report

    Get PDF
    Introduction: Gallbladder perforation is a rare but life threatening event. We describe a case of gallbladder perforation encountered at initial presentation. Case Presentation: A 51 years old male, without any known medical co-morbidity, presented with a 1-day history of sudden-onset abdominal pain and abdominal distension. On examination, his abdomen was distended with generalized tenderness on palpation. Abdominal x-ray showed no signs of intestinal obstruction or pneumoperitoneum. Computed tomography scan of the abdomen showed appearance suggestive of gallbladder perforation. The Patient was taken to the operating room and a diagnostic laparoscopy was performed revealing yellowish green fluid in the peritoneum. Difficulty in visualization of the anatomy led to conversion of the procedure to an open laparotomy. Intra-operative findings included a perforation near the neck of the gall bladder in association with a 2 x 1 cm gall stone. Near-total cholecystectomy was performed and a single large gall stone was retrieved. The peritoneal cavity was washed with normal saline and a drain was placed. The rectus sheath was closed but the wound was kept open for healing by delayed primary closure. The Patient\u27s hospital course was uneventful and he was discharged from the hospital on the 3rd post-operative day. He returned to the clinic after one week whereby his drain was removed and his wound closed. Conclusion: Gallbladder perforation is an unusual initial presentation of gallbladder disease. Early diagnosis of gallbladder perforation and immediate surgical intervention are of prime importance in decreasing morbidity and mortality associated with this condition

    Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations

    Get PDF
    We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiments G6sulfur and G6solar for six Earth system models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming that results from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that over the final two decades of this century there are considerable inter-model spreads in the needed injection amounts of sulfate (29±9Tg-SO2/yr between 2081 and 2100), in the latitudinal distribution of the aerosol cloud and in the stratospheric temperature changes resulting from the added aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91±0.44). The analyzed models already show significant differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05K±0.42K and 2.28±0.80, respectively, for SSP5-8.5 minus SSP2-4.5 averaged over 2081-2100). With aerosol injection, the differences in how the aerosols spread further change some of the underlying uncertainties, such as the global mean precipitation response (-3.79±0.76 for G6sulfur compared to -2.07±0.40 for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the behavior of the aerosols also result in a larger uncertainty in the regional surface temperature response among models in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modeled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system. However, all models agree that compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures. © 2021 Daniele Visioni et al
    corecore