2,623 research outputs found
Observations of the Io plasma torus
The short wavelength spectrography on the IUE satellite was used to obtain spectra of the plasma torus near the orbit of Io about Jupiter. Three exposures of about 8 hours each taken in March and May 1979 show emission features due to SII, SIII, and OIII. The absence of features at other wavelengths permits upper limits to be other species in the torus
Coupled opto-electronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis
A general problem arising in computer simulations is the number of material
and device parameters, which have to be determined by dedicated experiments and
simulation-based parameter extraction. In this study we analyze measurements of
the short-circuit current dependence on the active layer thickness and
current-voltage curves in poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid
methyl ester (P3HT:PCBM) based solar cells. We have identified a set of
parameter values including dissociation parameters that describe the
experimental data. The overall agreement of our model with experiment is good,
however a discrepancy in the thickness dependence of the current-voltage curve
questions the influence of the electric field in the dissociation process. In
addition transient simulations are analyzed which show that a measurement of
the turn-off photocurrent can be useful for estimating charge carrier
mobilities.Comment: 10 pages, 12 figures, 2 tables, Accepted for publication in Journal
of Applied Physic
Observations of polar aurora on Jupiter
North-south spatial maps of Jupiter were obtained with the SWP camera in IUE observations of 10 December 1978, 19 May 1979, and 7 June 1979. Bright auroral emissions were detected from the north and south polar regions at H Ly alpha (1216 A) and in the H2 Lyman bands (1250-1608 A) on 19 May 1979; yet no enhanced polar emission was detected on the other days. The relationship between the IUE observing geometry and the geometry of the Jovian magnetosphere is discussed
Electronic structure and dynamics of optically excited single-wall carbon nanotubes
We have studied the electronic structure and charge-carrier dynamics of
individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using
optical and electron-spectroscopic techniques. The electronic structure of
semiconducting SWNTs in the band-gap region is analyzed using near-infrared
absorption spectroscopy. A semi-empirical expression for
transition energies, based on tight-binding calculations is found to give
striking agreement with experimental data. Time-resolved PL from dispersed
SWNT-micelles shows a decay with a time constant of about 15 ps. Using
time-resolved photoemission we also find that the electron-phonon ({\it e-ph})
coupling in metallic tubes is characterized by a very small {\it e-ph}
mass-enhancement of 0.0004. Ultrafast electron-electron scattering of
photo-excited carriers in nanotube ropes is finally found to lead to internal
thermalization of the electronic system within about 200 fs.Comment: 10 pages, 10 figures, submitted to Applied Physics
Io: IUE observations of its atmosphere and the plasma torus
Two of the main components of the atmosphere of Io, neutral oxygen and sulfur, were detected with the IUE. Four observations yield brightnesses that are similar, regardless of whether the upstream or the downstream sides of the torus plasma flow around Io is observed. A simple model requires the emissions to be produced by the interaction of O and S columns in the exospheric range with 2 eV electrons. Cooling of the 5 eV torus electrons is required prior to their interaction with the atmosphere of Io. Inconsistencies in the characteristics of the spectra that cannot be accounted for in this model require further analysis with improved atomic data. The Io plasma torus was monitored with the IUE. The long-term stability of the warm torus is established. The observed brightnesses were analyzed using a model of the torus, and variations of less than 30 percent in the composition are observed, the quantitative results being model dependent
Microwave cavity perturbation studies on H-form and Cu ion-exchanged SCR catalyst materials: correlation of ammonia storage and dielectric properties
Ammonia-based selective catalytic reduction (SCR) has become the major control strategy for NOx emissions from light and heavy duty diesel engines. Before reducing NOx on the SCR active material, ammonia storage on the active sites of the catalyst is crucial. The in operando measurement of the dielectric properties of the catalyst material using microwave cavity perturbation is a promising indicator of ammonia loading. In this work, the influence of copper ion-exchange of the zeolite-based SCR material ZSM-5 on the NH3 storage and the dielectric properties is highlighted. The catalyst powder samples were monitored by microwave cavity perturbation as a function of the stored ammonia content at a frequency of approximately 1.2 GHz in a temperature range between 200 and 350 °C. Due to ion exchange, the NH3 storage behavior changes, what could be monitored in the sensitivity of the dielectric permittivity to NH3. The dependence of the complex dielectric permittivity on ammonia loading is decreased by ion exchange, hinting that mostly ammonia storage on Brønsted sites affects the dielectric permittivity. This finding adds new knowledge to the electrical conduction and polarization mechanisms occurring in these zeolite materials
Orbital and stochastic far-UV variability in the nova-like system V3885 Sgr
Highly time-resolved time-tagged FUSE satellite spectroscopic data are
analysed to establish the far-ultraviolet (FUV) absorption line characteristics
of the nova-like cataclysmic variable binary, V3885 Sgr. We determine the
temporal behaviour of low (Ly_beta, CIII, NIII) and high (SIV, PV, OVI) ion
species, and highlight corresponding orbital phase modulated changes in these
lines. On average the absorption troughs are blueshifted due to a low velocity
disc wind outflow. Very rapid (~ 5 min) fluctuations in the absorption lines
are isolated, which are indicative of stochastic density changes. Doppler
tomograms of the FUV lines are calculated which provide evidence for structures
where a gas stream interacts with the accretion disc. We conclude that the line
depth and velocity changes as a function of orbital phase are consistent with
an asymmetry that has its origin in a line-emitting, localised disc-stream
interaction region.Comment: Accepted for publication in MNRA
What is the Total Deuterium Abundance in the Local Galactic Disk?
Analyses of spectra obtained with the Far Ultraviolet Spectroscopic Explorer
(FUSE) satellite, together with spectra from the Copernicus and IMAPS
instruments, reveal an unexplained very wide range in the observed
deuterium/hydrogen (D/H) ratios for interstellar gas in the Galactic disk
beyond the Local Bubble. We argue that spatial variations in the depletion of
deuterium onto dust grains can explain these local variations in the observed
gas-phase D/H ratios. We present a variable deuterium depletion model that
naturally explains the constant measured values of D/H inside the Local Bubble,
the wide range of gas-phase D/H ratios observed in the intermediate regime (log
N(H I} = 19.2-20.7), and the low gas-phase D/H ratios observed at larger
hydrogen column densities. We consider empirical tests of the deuterium
depletion hypothesis: (i) correlations of gas-phase D/H ratios with depletions
of the refractory metals iron and silicon, and (ii) correlation with the
molecular hydrogen rotational temperature. Both of these tests are consistent
with deuterium depletion from the gas phase in cold, not recently shocked,
regions of the ISM, and high gas-phase D/H ratios in gas that has been shocked
or otherwise heated recently. We argue that the most representative value for
the total (gas plus dust) D/H ratio within 1 kpc of the Sun is >=23.1 +/- 2.4
(1 sigma) parts per million (ppm). This ratio constrains Galactic chemical
evolution models to have a very small deuterium astration factor, the ratio of
primordial to total (D/H) ratio in the local region of the Galactic disk, which
we estimate to be f_d <= 1.19 +/-0.16 (1 sigma) or <= 1.12 +/- 0.14 (1 sigma)
depending on the adopted light element nuclear reaction rates.Comment: 19 pages, 9 figure
- …
