2,344 research outputs found

    Femtosecond time-resolved photoemission as a probe of electronic transport in single wall carbon nanotubes

    Get PDF
    We have performed the first time-domain measurements of the electron-electron (e-e) and electron-phonon (e-ph) dynamics in single-wall carbon nanotube samples (bucky paper) using time-resolved two-photon photoemission. In these room temperature experiments the absorption of a visible femtosecond pump pulse creates a non-equilibrium electron distribution whose evolution in time can be probed by a second UV-pulse. The decay of the excited electron distribution is characterized by a fast channel on the subpicosecond time-scale—associated with thermalization of the non-equilibrium distribution—and a slower channel which can be attributed to e-ph interaction. Once thermalized the electron distribution cools down to the lattice temperature as determined by the electron-phonon coupling constant g which was found to be 1×1015 Wm−3 K−1

    Electron-Phonon Interaction in Single-Wall Carbon Nanotubes: A Time Domain Study

    Get PDF
    We investigate the electron-phonon (e-ph) interaction in single-wall carbon nanotube samples at room temperature using femtosecond time-resolved photoemission. By probing electrons from the vicinity of the Fermi level we are able to study the e-ph interaction in the metallic nanotube species only. The observed electron dynamics can be used to calculate e-ph scattering matrix elements for two likely scattering scenarios: forward scattering from twistons and backscattering by longitudinal acoustic phonons. The corresponding matrix elements reveal an intrinsically weak e-ph interaction approximately 50% smaller than predicted by tight-binding calculations

    Coupled opto-electronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis

    Full text link
    A general problem arising in computer simulations is the number of material and device parameters, which have to be determined by dedicated experiments and simulation-based parameter extraction. In this study we analyze measurements of the short-circuit current dependence on the active layer thickness and current-voltage curves in poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) based solar cells. We have identified a set of parameter values including dissociation parameters that describe the experimental data. The overall agreement of our model with experiment is good, however a discrepancy in the thickness dependence of the current-voltage curve questions the influence of the electric field in the dissociation process. In addition transient simulations are analyzed which show that a measurement of the turn-off photocurrent can be useful for estimating charge carrier mobilities.Comment: 10 pages, 12 figures, 2 tables, Accepted for publication in Journal of Applied Physic

    Observations of the Io plasma torus

    Get PDF
    The short wavelength spectrography on the IUE satellite was used to obtain spectra of the plasma torus near the orbit of Io about Jupiter. Three exposures of about 8 hours each taken in March and May 1979 show emission features due to SII, SIII, and OIII. The absence of features at other wavelengths permits upper limits to be other species in the torus

    Observations of polar aurora on Jupiter

    Get PDF
    North-south spatial maps of Jupiter were obtained with the SWP camera in IUE observations of 10 December 1978, 19 May 1979, and 7 June 1979. Bright auroral emissions were detected from the north and south polar regions at H Ly alpha (1216 A) and in the H2 Lyman bands (1250-1608 A) on 19 May 1979; yet no enhanced polar emission was detected on the other days. The relationship between the IUE observing geometry and the geometry of the Jovian magnetosphere is discussed

    Temperature Dependence of Electron to Lattice Energy-Transfer in Single-Wall Carbon Nanotube Bundles

    Full text link
    The electron-phonon coupling strength in single-wall carbon nanotube (SWNT) bundles has been studied directly in the time-domain by femtosecond time-resolved photoelectron spectroscopy. We have measured the dependence of H(T_e,T_l), the rate of energy-transfer between the electronic system and the lattice as a function of electron and lattice temperatures T_e and T_l. The experiments are consistent with a T^5 dependence of H on the electron- and lattice-temperatures, respectively. The results can be related to the e-ph mass enhancement parameter lambda. The experimentally obtained value for lambda/theta_D^2, where theta_D is the Debye temperature, suggests that e-ph scattering times at the Fermi level of SWNT bundles can be exceptionally long, exceeding 1.5 ps at room temperature.Comment: 5 pages, 4 figures, submitted to the Journal of Nanoscience and Nanotechnologiy, special issue on nanotube

    Electronic structure and dynamics of optically excited single-wall carbon nanotubes

    Full text link
    We have studied the electronic structure and charge-carrier dynamics of individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using optical and electron-spectroscopic techniques. The electronic structure of semiconducting SWNTs in the band-gap region is analyzed using near-infrared absorption spectroscopy. A semi-empirical expression for E11SE_{11}^{\rm S} transition energies, based on tight-binding calculations is found to give striking agreement with experimental data. Time-resolved PL from dispersed SWNT-micelles shows a decay with a time constant of about 15 ps. Using time-resolved photoemission we also find that the electron-phonon ({\it e-ph}) coupling in metallic tubes is characterized by a very small {\it e-ph} mass-enhancement of 0.0004. Ultrafast electron-electron scattering of photo-excited carriers in nanotube ropes is finally found to lead to internal thermalization of the electronic system within about 200 fs.Comment: 10 pages, 10 figures, submitted to Applied Physics

    Spatial imaging of UV emission from Jupiter and Saturn

    Get PDF
    Spatial imaging with the IUE is accomplished both by moving one of the apertures in a series of exposures and within the large aperture in a single exposure. The image of the field of view subtended by the large aperture is focussed directly onto the detector camera face at each wavelength; since the spatial resolution of the instrument is 5 to 6 arc sec and the aperture extends 23.0 by 10.3 arc sec, imaging both parallel and perpendicular to dispersion is possible in a single exposure. The correction for the sensitivity variation along the slit at 1216 A is obtained from exposures of diffuse geocoronal H Ly alpha emission. The relative size of the aperture superimposed on the apparent discs of Jupiter and Saturn in typical observation is illustrated. By moving the planet image 10 to 20 arc sec along the major axis of the aperture (which is constrained to point roughly north-south) maps of the discs of these planets are obtained with 6 arc sec spatial resolution

    Anisotropy of quasiparticle lifetimes and the role of disorder in graphite from ultrafast time-resolved photoemission spectroscopy

    No full text
    Femtosecond time-resolved photoemission of photoexcited electrons in highly oriented pyrolytic graphite (HOPG) provides strong evidence for anisotropies of quasiparticle (QP) lifetimes. Indicative of such anisotropies is a pronounced anomaly in the energy dependence of QP lifetimes between 1.1 and 1.5 eV—the vicinity of a saddle point in the graphite band structure. This is supported by recent ab initio calculations and a comparison with experiments on defect-enriched HOPG which reveal that disorder, e.g., defects or phonons, increases electron energy relaxation rates
    • …
    corecore