5,242 research outputs found

    The Use of Magnetic Iron Oxide for Recovery of Virus from Water

    Get PDF

    Bituminous Sandstone Mixtures

    Get PDF

    Ablaze with love: a video documentary to sensitize the Church of the Nazarene to its heritage of gender mutuality in ministry

    Get PDF
    https://place.asburyseminary.edu/ecommonsatsdissertations/1636/thumbnail.jp

    Spatiotemporal dynamics of quantum jumps with Rydberg atoms

    Get PDF
    We study the nonequilibrium dynamics of quantum jumps in a one-dimensional chain of atoms. Each atom is driven on a strong transition to a short-lived state and on a weak transition to a metastable state. We choose the metastable state to be a Rydberg state so that when an atom jumps to the Rydberg state, it inhibits or enhances jumps in the neighboring atoms. This leads to rich spatiotemporal dynamics that are visible in the fluorescence of the strong transition.Comment: 10 page

    Coulomb crystallization in expanding laser-cooled neutral plasmas

    Full text link
    We present long-time simulations of expanding ultracold neutral plasmas, including a full treatment of the strongly coupled ion dynamics. Thereby, the relaxation dynamics of the expanding laser-cooled plasma is studied, taking into account elastic as well as inelastic collisions. It is demonstrated that, depending on the initial conditions, the ionic component of the plasma may exhibit short-range order or even a superimposed long-range order resulting in concentric ion shells. In contrast to ionic plasmas confined in traps, the shell structures are built up from the center of the plasma cloud rather than from the periphery

    Borromean rays and hyperplanes

    Full text link
    Three disjoint rays in euclidean 3-space form Borromean rays provided their union is knotted, but the union of any two components is unknotted. We construct infinitely many Borromean rays, uncountably many of which are pairwise inequivalent. We obtain uncountably many Borromean hyperplanes.Comment: 41 pages, 30 figures (19 with captions, 11 inline

    Nonlinear force-free modelling: influence of inaccuracies in the measured magnetic vector

    Full text link
    Context: Solar magnetic fields are regularly extrapolated into the corona starting from photospheric magnetic measurements that can suffer from significant uncertainties. Aims: Here we study how inaccuracies introduced into the maps of the photospheric magnetic vector from the inversion of ideal and noisy Stokes parameters influence the extrapolation of nonlinear force-free magnetic fields. Methods: We compute nonlinear force-free magnetic fields based on simulated vector magnetograms, which have been produced by the inversion of Stokes profiles, computed froma 3-D radiation MHD simulation snapshot. These extrapolations are compared with extrapolations starting directly from the field in the MHD simulations, which is our reference. We investigate how line formation and instrumental effects such as noise, limited spatial resolution and the effect of employing a filter instrument influence the resulting magnetic field structure. The comparison is done qualitatively by visual inspection of the magnetic field distribution and quantitatively by different metrics. Results: The reconstructed field is most accurate if ideal Stokes data are inverted and becomes less accurate if instrumental effects and noise are included. The results demonstrate that the non-linear force-free field extrapolation method tested here is relatively insensitive to the effects of noise in measured polarization spectra at levels consistent with present-day instruments. Conclusions heading: Our results show that we can reconstruct the coronal magnetic field as a nonlinear force-free field from realistic photospheric measurements with an accuracy of a few percent, at least in the absence of sunspots.Comment: A&A, accepted, 9 Pages, 4 Figure

    Two-Level Systems in Evaporated Amorphous Silicon

    Full text link
    In ee-beam evaporated amorphous silicon (aa-Si), the densities of two-level systems (TLS), n0n_{0} and P‾\overline{P}, determined from specific heat CC and internal friction Q−1Q^{-1} measurements, respectively, have been shown to vary by over three orders of magnitude. Here we show that n0n_{0} and P‾\overline{P} are proportional to each other with a constant of proportionality that is consistent with the measurement time dependence proposed by Black and Halperin and does not require the introduction of additional anomalous TLS. However, n0n_{0} and P‾\overline{P} depend strongly on the atomic density of the film (nSin_{\rm Si}) which depends on both film thickness and growth temperature suggesting that the aa-Si structure is heterogeneous with nanovoids or other lower density regions forming in a dense amorphous network. A review of literature data shows that this atomic density dependence is not unique to aa-Si. These findings suggest that TLS are not intrinsic to an amorphous network but require a heterogeneous structure to form
    • …
    corecore