research

Two-Level Systems in Evaporated Amorphous Silicon

Abstract

In ee-beam evaporated amorphous silicon (aa-Si), the densities of two-level systems (TLS), n0n_{0} and P\overline{P}, determined from specific heat CC and internal friction Q1Q^{-1} measurements, respectively, have been shown to vary by over three orders of magnitude. Here we show that n0n_{0} and P\overline{P} are proportional to each other with a constant of proportionality that is consistent with the measurement time dependence proposed by Black and Halperin and does not require the introduction of additional anomalous TLS. However, n0n_{0} and P\overline{P} depend strongly on the atomic density of the film (nSin_{\rm Si}) which depends on both film thickness and growth temperature suggesting that the aa-Si structure is heterogeneous with nanovoids or other lower density regions forming in a dense amorphous network. A review of literature data shows that this atomic density dependence is not unique to aa-Si. These findings suggest that TLS are not intrinsic to an amorphous network but require a heterogeneous structure to form

    Similar works