221 research outputs found

    Salivary exRNA biomarkers to detect gingivitis and monitor disease regression

    Full text link
    AimThis study tests the hypothesis that salivary extracellular RNA (exRNA) biomarkers can be developed for gingivitis detection and monitoring disease regression.Materials and MethodsSalivary exRNA biomarker candidates were developed from a total of 100 gingivitis and nonâ gingivitis individuals using Affymetrix’s expression microarrays. The top 10 differentially expressed exRNAs were tested in a clinical cohort to determine whether the discovered salivary exRNA markers for gingivitis were associated with clinical gingivitis and disease regression. For this purpose, unstimulated saliva was collected from 30 randomly selected gingivitis subjects, the gingival and plaque indexes scores were taken at baseline, 3 and 6 weeks and salivary exRNAs were assayed by means of reverse transcription quantitative polymerase chain reaction.ResultsEight salivary exRNA biomarkers developed for gingivitis were statistically significantly changed over time, consistent with disease regression. A panel of four salivary exRNAs [SPRR1A, lncâ TET3â 2:1, FAM25A, CRCT1] can detect gingivitis with a clinical performance of 0.91 area under the curve, with 71% sensitivity and 100% specificity.ConclusionsThe clinical values of the developed salivary exRNA biomarkers are associated with gingivitis regression. They offer strong potential to be advanced for definitive validation and clinical laboratory development test.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144647/1/jcpe12930.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144647/2/jcpe12930_am.pd

    Clinical Outcomes of a Zika Virus Mother-Child Pair Cohort in Spain

    Get PDF
    BACKGROUND: Zika virus (ZIKV) infection has been associated with congenital microcephaly and other neurodevelopmental abnormalities. There is little published research on the effect of maternal ZIKV infection in a non-endemic European region. We aimed to describe the outcomes of pregnant travelers diagnosed as ZIKV-infected in Spain, and their exposed children. METHODS: This prospective observational cohort study of nine referral hospitals enrolled pregnant women (PW) who travelled to endemic areas during their pregnancy or the two previous months, or those whose sexual partners visited endemic areas in the previous 6 months. Infants of ZIKV-infected mothers were followed for about two years. RESULTS: ZIKV infection was diagnosed in 163 PW; 112 (70%) were asymptomatic and 24 (14.7%) were confirmed cases. Among 143 infants, 14 (9.8%) had adverse outcomes during follow-up; three had a congenital Zika syndrome (CZS), and 11 other potential Zika-related outcomes. The overall incidence of CZS was 2.1% (95%CI: 0.4-6.0%), but among infants born to ZIKV-confirmed mothers, this increased to 15.8% (95%CI: 3.4-39.6%). CONCLUSIONS: A nearly 10% overall risk of neurologic and hearing adverse outcomes was found in ZIKV-exposed children born to a ZIKV-infected traveler PW. Longer-term follow-up of these children is needed to assess whether there are any later-onset manifestations

    Comprehensive Structural and Substrate Specificity Classification of the Saccharomyces cerevisiae Methyltransferome

    Get PDF
    Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity

    FED-A, an advanced performance FED based on low safety factor and current drive

    Get PDF
    This document is one of four describing studies performed in FY 1982 within the context of the Fusion Engineering Device (FED) Program for the Office of Fusion Energy, U.S. Department of Energy. The documents are: 1. FED Baseline Engineering Studies (ORNL/FEDC-82/2), 2. FED-A, An Advanced Performance FED Based on Low Safety Factor and Current Drive (this document), 3. FED-R, A Fusion Device Utilizing Resistive Magnets (ORNL/FEDC-82/1), and 4. Technology Demonstration Facility TDF. These studies extend the FED Baseline concept of FY 1981 and develop innovative and alternative concepts for the FED. The FED-A study project was carried out as part of the Innovative and Alternative Tokamak FED studies, under the direction of P. H. Rutherford, which were part of the national FED program during FY 1982. The studies were performed jointly by senior scientists in the magnetic fusion community and the staff of the Fusion Engineering Design Center (FEDC). Y-K. M. Peng of the FEDC, on assignment from Oak Ridge National Laboratory, served as the design manager

    Interaction of convective organisation with monsoon precipitation, atmosphere, surface and sea: the 2016 INCOMPASS field campaign in India

    Get PDF
    The INCOMPASS field campaign combines airborne and ground measurements of the 2016 Indian monsoon, towards the ultimate goal of better predicting monsoon rainfall. The monsoon supplies the majority of water in South Asia, but forecasting from days to the season ahead is limited by large, rapidly developing errors in model parametrizations. The lack of detailed observations prevents thorough understanding of the monsoon circulation and its interaction with the land surface: a process governed by boundary-layer and convective-cloud dynamics. INCOMPASS used the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft for the first project of this scale in India, to accrue almost 100 hours of observations in June and July 2016. Flights from Lucknow in the northern plains sampled the dramatic contrast in surface and boundary layer structures between dry desert air in the west and the humid environment over the northern Bay of Bengal. These flights were repeated in pre-monsoon and monsoon conditions. Flights from a second base at Bengaluru in southern India measured atmospheric contrasts from the Arabian Sea, over the Western Ghats mountains, to the rain shadow of southeast India and the south Bay of Bengal. Flight planning was aided by forecasts from bespoke 4km convection-permitting limited-area models at the Met Office and India's NCMRWF. On the ground, INCOMPASS installed eddy-covariance flux towers on a range of surface types, to provide detailed measurements of surface fluxes and their modulation by diurnal and seasonal cycles. These data will be used to better quantify the impacts of the atmosphere on the land surface, and vice versa. INCOMPASS also installed ground instrumentation supersites at Kanpur and Bhubaneswar. Here we motivate and describe the INCOMPASS field campaign. We use examples from two flights to illustrate contrasts in atmospheric structure, in particular the retreating mid-level dry intrusion during the monsoon onset

    Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity

    Get PDF
    Tumor-associated myeloid cells have been implicated in regulating many of the “hallmarks of cancer” and thus fostering solid tumor development and metastasis. However, the same innate leukocytes also participate in anti-tumor immunity and restraint of malignant disease. While many factors regulate the propensity of myeloid cells to promote or repress cancerous growths, polarized adaptive immune responses by B and T lymphocytes have been identified as regulators of many aspects of myeloid cell biology by specifically regulating their functional capabilities. Here, we detail the diversity of heterogeneous B and T lymphocyte populations and their impacts on solid tumor development through their abilities to regulate myeloid cell function in solid tumors

    The BLLAST field experiment: Boundary-Layer late afternoon and sunset turbulence

    Get PDF
    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.publishedVersio
    corecore