164 research outputs found

    Black hole thermodynamics from quantum gravity

    Get PDF
    The semiclassical approximation is studied on hypersurfaces approaching the union of future null infinity and the event horizon on a large class of four dimensional black hole backgrounds. Quantum fluctuations in the background geometry are shown to lead to a breakdown of the semiclassical approximation in these models. The boundary of the region where the semiclassical approximation breaks down is used to define a `stretched horizon'. It is shown that the same effect that brings about the breakdown in semiclassical evolution associates a temperature and an entropy to the region behind the stretched horizon, and identifies the microstates that underlie the thermodynamical properties. The temperature defined in this way is equal to that of the black hole and the entropy is equal to the Bekenstein entropy up to a factor of order unity.Comment: Latex, 18 pages, no figure

    Properties of D-Branes in Matrix Model of IIB Superstring

    Get PDF
    We discuss properties of D-brane configurations in the matrix model of type IIB superstring recently proposed by Ishibashi, Kawai, Kitazawa and Tsuchiya. We calculate central charges in supersymmetry algebra at infinite N and associate them with one- and five-branes present in IIB superstring theory. We consider classical solutions associated with static three- and five-branes and calculate their interactions at one loop in the matrix model. We discuss some aspects of the matrix-model formulation of IIB superstring.Comment: 15pp., Latex, v2: a few typos corrected, v3: coefficient in Eq.(3.19) correcte

    Quantum Hall Effect in a Holographic Model

    Full text link
    We consider a holographic description of a system of strongly coupled fermions in 2+1 dimensions based on a D7-brane probe in the background of D3-branes, and construct stable embeddings by turning on worldvolume fluxes. We study the system at finite temperature and charge density, and in the presence of a background magnetic field. We show that Minkowski-like embeddings that terminate above the horizon describe a family of quantum Hall states with filling fractions that are parameterized by a single discrete parameter. The quantization of the Hall conductivity is a direct consequence of the topological quantization of the fluxes. When the magnetic field is varied relative to the charge density away from these discrete filling fractions, the embeddings deform continuously into black-hole-like embeddings that enter the horizon and that describe metallic states. We also study the thermodynamics of this system and show that there is a first order phase transition at a critical temperature from the quantum Hall state to the metallic state.Comment: v2: 27 pages, 12 figures. There is a major revision in the quantitative analysis. The qualitative results and conclusions are unchanged, with one exception: we show that the quantum Hall state embeddings, which exist for discrete values of the filling fraction, deform continuously into metallic state embeddings away from these filling fraction

    p-p' System with B-field, Branes at Angles and Noncommutative Geometry

    Full text link
    We study the generic ppp-p^\prime system in the presence of constant NS 2-form BijB_{ij} field. We derive properties concerning with the noncommutativity of D-brane worldvolume, the Green functions and the spectrum of this system. In the zero slope limit, a large number of light states appear as the lowest excitations in appropriate cases. We are able to relate the energies of the lowest states after the GSO projection with the configurations of branes at angles. Through analytic continuation, the system is compared with the branes with relative motion.Comment: 21 pages, Latex. References regarding to section 3 and 4 added. Typos correcte

    Black Holes with Multiple Charges and the Correspondence Principle

    Get PDF
    We consider the entropy of near extremal black holes with multiple charges in the context of the recently proposed correspondence principle of Horowitz and Polchinski, including black holes with two, three and four Ramond-Ramond charges. We find that at the matching point the black hole entropy can be accounted for by massless open strings ending on the D-branes for all cases except a black hole with four Ramond-Ramond charges, in which case a possible resolution in terms of brane-antibrane excitations is considered.Comment: 26 pages, harvmac, minor correction

    Topologically induced local P and CP violation in QCD x QED

    Full text link
    The existence of topological solutions and axial anomaly open a possibility of P and CP violation in QCD. For a reason that has not yet been established conclusively, this possibility is not realized in strong interactions - the experimental data indicate that a global P and CP violation in QCD is absent. Nevertheless, the fluctuations of topological charge in QCD vacuum, although not observable directly, are expected to play an important role in the breaking of UA(1)U_A(1) symmetry and in the mass spectrum and other properties of hadrons. Moreover, in the presence of very intense external electromagnetic fields topological solutions of QCD can induce local P- and CP-odd effects in the SUc(3)×Uem(1)SU_c(3)\times U_{em}(1) gauge theory that can be observed in experiment directly. Here I show how these local parity-violating phenomena can be described by using the Maxwell-Chern-Simons, or axion, electrodynamics as an effective theory. Local P- and CP- violation in hot QCD matter can be observed in experiment through the "chiral magnetic effect" - the separation of electric charge along the axis of magnetic field. Very recently, STAR Collaboration presented an observation of the electric charge asymmetry with respect to reaction plane in relativistic heavy ion collisions at RHIC.Comment: 24 pages, 6 figures; prepared for the special issue of Annals of Physic

    Phase transition between the BTZ black hole and AdS space

    Get PDF
    In three dimensions, a phase transition occurs between the non-rotating BTZ black hole and the massless BTZ black hole. Further, introducing the mass of a conical singularity, we show that a transition between the non-rotating BTZ black hole and thermal AdS space is also possible.Comment: 10 pages, 4 eps figures, version to appear in PL

    Entropies of Scalar Fields on Three Dimensional Black Holes

    Get PDF
    Thermodynamics of scalar fields is investigated in three dimensional black hole backgrounds in two approaches. One is mode expansion and direct computation of the partition sum, and the other is the Euclidean path integral approach. We obtain a number of exact results, for example, mode functions, Hartle-Hawking Green functions on the black holes, Green functions on a cone geometry, free energies and entropies. They constitute reliable bases for the thermodynamics of scalar fields. It is shown that thermodynamic quantities largely depend upon the approach to calculate them, boundary conditions for the scalar fields and regularization method. We find that, in general, the entropies are not proportional to the area of the horizon and that their divergent parts are not necessarily due to the existence of the horizon.Comment: 35 pages, Latex, 1 figure, postscript file attached at the en

    Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model

    Full text link
    In the chiral magnetic effect an imbalance in the number of left- and right-handed quarks gives rise to an electromagnetic current parallel to the magnetic field produced in noncentral heavy-ion collisions. The chiral imbalance may be induced by topologically nontrivial gluon configurations via the QCD axial anomaly, while the resulting electromagnetic current itself is a consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain limit is dual to large-N_c QCD, we discuss the proper implementation of the QED axial anomaly, the (ambiguous) definition of chiral currents, and the calculation of the chiral magnetic effect. We show that this model correctly contains the so-called consistent anomaly, but requires the introduction of a (holographic) finite counterterm to yield the correct covariant anomaly. Introducing net chirality through an axial chemical potential, we find a nonvanishing vector current only before including this counterterm. This seems to imply the absence of the chiral magnetic effect in this model. On the other hand, for a conventional quark chemical potential and large magnetic field, which is of interest in the physics of compact stars, we obtain a nontrivial result for the axial current that is in agreement with previous calculations and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent conductivity at the end of section 4; references added; version to appear in JHE

    Black Hole Entropy and Superconformal Field Theories on Brane-Antibrane Systems

    Full text link
    We obtain the enropy of Schwarzschild and charged black holes in D>4 from superconformal gases that live on p=10-D dimensional brane-antibrane systems wrapped on T^p. The preperties of the strongly coupled superconformal theories such as the appearance of hidden dimensions (for p=1,4) and fractional strings (for p=5) are crucial for our results. In all cases, the Schwarzschild radius is given by the transverse fluctuations of the branes and antibranes due to the finite temperature. We show that our results can be generalized to multicharged black holes.Comment: 24 pages in phyzzx.te
    corecore