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Abstract

In three dimensions, a phase transition occurs between the non-rotating BTZ black hole and the massless BTZ black hole. Further, introducing
the mass of a conical singularity, we show that a transition between the non-rotating BTZ black hole and thermal AdS space is also possible.
© 2006 Elsevier B.V. Open access under CC BY license.
1. Introduction

Hawking’s semiclassical analysis for the black hole radia-
tion suggests that most of information in initial states is shield
behind the event horizon and is never back to the asymptotic
region far from the evaporating black hole [1]. This means that
the unitarity is violated by an evaporating black hole. However,
this conclusion has been debated ever since [2,3]. It is closely
related to the information loss paradox which states the ques-
tion of whether the formation and subsequent evaporation of a
black hole is unitary. One of the most urgent problems in the
black hole physics is to resolve the unitarity issue.

Maldacena proposed that the unitarity can be restored if
one takes into account the topological diversity of gravitational
instantons with the same AdS boundary in three-dimensional
gravity [4]. Actually, three-dimensional gravity [5] is not di-
rectly related to the information loss problem because there is
no physically propagating degrees of freedom [6]. If this grav-
ity is part of string theory [7], the AdS/CFT correspondence [8]
means that the black hole formation and evaporating process
should be unitary because its boundary can be described by a
unitary CFT. Recently, Hawking has withdrawn his argument
on information loss and suggested that the unitarity can be pre-
served by extending Maldacena’s proposal to four-dimensional
gravity system [9].
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We remark an interesting phenomenon in the AdS black
hole thermodynamics. There exists the Hawking–Page tran-
sition between AdS–Schwarzschild black hole and thermal
AdS space in four dimensions [10]. Some authors have pro-
posed that this transition is also possible in three-dimensional
spacetimes: Transition between the non-rotating BTZ black
hole and thermal AdS space [11,12]. Recently the author has
shown that there is no the first-order Hawking–Page transi-
tion between the non-rotating BTZ black hole and thermal AdS
space [13], by comparing it with the phase transition between
AdS–Schwarzschild black hole and thermal AdS space.

In this Letter, we show that a phase transition occurs be-
tween the non-rotating BTZ black hole and the massless BTZ
black hole. If one introduces the mass of a conical singularity,
a transition between the non-rotating BTZ black hole and ther-
mal AdS space is also possible. We use the off-shell β-function
which measures the mass of a conical singularity at the event
horizon, and the off-shell free energy which is used to study the
growth of the off-shell black hole.

We start with the non-rotating (J = 0) BTZ black hole de-
scribed by the line element

(1)ds2
NBTZ = −

[
r2

l2
− μ

]
dt2 + dr2

r2

l2
− μ

+ r2 dθ2,

which possesses a continuous mass spectrum from M = μ
8G3

to
the massless AdS black holes (M = 0) with different topology:

(2)ds2
MADS = − r2

2
dt2 + l2

2
dr2 + r2 dθ2,
l r
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where we find a degenerate event horizon at the origin of the
coordinate (r = 0). Also the AdS spacetime is allowed by the
line element

(3)ds2
TADS = −

[
1 + r2

l2

]
dt2 + dr2

1 + r2

l2

+ r2 dθ2.

In this work we consider three interesting cases [14,15].
(i) The non-rotating BTZ black hole (NBTZ) is given by
M = r2+/8G3l

2 and TH = r+/2πl2 with the horizon radius
r+ = l

√
μ. (ii) The massless BTZ black hole (MBTZ) with

M = TH = 0 is called the spacetime picture of the RR vacuum
state. (iii) The thermal AdS spacetime (TADS) is determined
by M = −1/8G3 and TH = 0. This case corresponds to the
spacetime picture of the NS–NS vacuum state [16]. Although
the thermodynamic properties of TADS and MBTZ are nearly
the same, their Euclidean topologies are quite different: TADS
(MBTZ) are topologically non-trivial (trivial). The TADS has
a non-contractible S1 at r = 0, while the MBTZ is contractible
but it has a conical singularity at the event horizon (r = 0).

In d � 4 case, the Hawking–Page phase transition occurs
between the Schwarzschild–AdS black hole and thermal AdS
space. In this case, there exists a minimum temperature at r+ =
r0. We have two solutions: for r+ < r0, the unstable black hole
with the negative heat capacity; for r+ > r0, the stable black
hole with the positive heat capacity. Even though the unstable
solution is thermally unstable, it is important as the mediator of
phase transition from thermal AdS to AdS black hole.

2. Transition between MBTZ and NBTZ

However, for Chern–Simons black holes (NBTZ case), the
situation is quite different from the case of the Schwarzschild–
AdS black hole [17,18]. The NBTZ could be thermally equilib-
rium with the heat reservoir at any temperature T . To show this,
we introduce the on-shell free energy (energy) and heat capac-
ity (entropy) as

F on
NBTZ = −ENBTZ = − r2+

8G3l2
,

(4)CNBTZ = SNBTZ = πr+
2G3

.

A condition for the thermal equilibrium is given by T = TH .
Then we always have a stable NBTZ at rs = 2πl2T without the
minimum temperature. A positive heat capacity (CNBTZ > 0)
means that the NBTZ is a thermally stable system, irrespective
of any size of the black hole. This point contrasts to the case of
the Schwarzschild–AdS black hole. It is obvious that the NBTZ
with TH = 0 leads to the MBTZ case

(5)FMBTZ = EMBTZ = CMBTZ = SMBTZ = 0.

On the other hand, thermodynamic quantities for thermal AdS
space are given by

FTADS = ETADS = − 1

8G3
,

(6)CTADS = STADS = 0.
Fig. 1. The temperature picture of a cool (off-shell) black hole growth in a
hotter heat bath at T = Tc = 1/2π (small dashed line). Solid line shows a
plot of the increasing temperature TH of a cool black hole with l = 1. Large
dashed line indicates the off-shell parameter α(r+, Tc). Dotted line denotes the
deficit angle δ(r+, Tc). In this case we have a saddle point (stable NBTZ) at
rs = 1 (α = 1, δ = 0, TH = Tc).

In order to study the phase transition clearly, we have to in-
troduce the generalized (off-shell) free energy

(7)F off
NBTZ = ENBTZ − T · SNBTZ.

Also the off-shell parameter α and the deficit angle δ take the
forms

(8)α(r+, T ) = TH

T
, δ(r+, T ) = 2π(1 − α).

As is shown in Fig. 1, α is zero at r+ = 0 and it is one at r+ = rs
with l = 1. On the other hand, δ has the maximum of 2π at r+ =
0 and it is zero at r+ = rs . This means that the near horizon
geometry at r+ = 0 is the narrowest cone with the shape (≺),
while its geometry at r+ = rs is a contractible manifold (⊂).
In this sense r+ = 0 is not a saddle point. We have 0 < δ < 2π

between r+ = 0 and r+ = rs and thus we have a cone singularity
at the event horizon (<). Using α, we can rewrite the off-shell
free energy as

(9)F off
NBTZ(r+, T ) = −F on

NBTZ

[
1 − 2

α

]

with the corresponding Euclidean action1 I off
NBTZ = F off

NBTZ/T .
At α = 1 (r+ = rs), we recovers F off

NBTZ = F on
NBTZ. We confirm

this from the operation

(10)
∂F off

NBTZ

∂r+
= 0 → T = TH → F off

NBTZ = F on
NBTZ.

In this sense the off-shell (off-equilibrium) free energy be-
comes the on-shell free energy at the saddle point of r+ = rs =

1 In Appendix D of Ref. [12], there is a slightly different approach to this free

energy. The on-shell action is given by Ion
NBTZ = F on

NBTZ/TH = −πr+
4G3

and

a contribution from the conical singularity is Ics = − r+δ
4G3

. The total gravita-

tional action is then: Ig = Ion
NBTZ + Ics = πr+

4G3
α − πr+

2G3
= −Ion

NBTZα[1 − 2
α ] =

F off
NBTZ/T . Here we prove Ig = Ioff

NBTZ. If this conical deficit is created by a
Euclidean point particle of mass Mpp, we include its action Ipp(= −Ics) =
−π2l2T α(α − 1)/G3 as a counter term. Then the total action leads to the on-
shell action: Itot = Ion

NBTZ + Ics + Ipp = Ion
NBTZ.
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Fig. 2. The on-shell versus off-shell free energy. The solid line represents the
on-free energy F on

NBTZ(r+) in the units of G3 and l = 1, while the dashed line

denotes the off-shell free energy F off
NBTZ(r+, T ) for four different temperatures:

from the top down, T = 0,0.059, Tc(= 0.159),0.259. At each saddle point
r+ = rs , we have F out

NBTZ = F on
NBTZ.

2πl2T > 0. Further, we obtain the β-function from the defini-
tion

(11)βNBTZ(r+, T ) ∝ ∂I off
NBTZ

∂r+
= −CNBTZ

6l
δ(r+, T ),

where the CNBTZ-function is related to the central charge on
the boundary CFT. In this case, it is just a constant CNBTZ =
3l/2G3 = c. Further Eq. (11) means that the β-function mea-
sures the deficit angle δ mainly.

At this stage, we introduce an assumed picture of the phase
transition in three dimensions. A phase transition may occur at
T = Tc = 1/2πl(r+ = l) between NBTZ and MBTZ [13]. As
is shown in Fig. 2, at T = 0, the MBTZ is a saddle point as the
ground state. For T > 0, we have F off

NBTZ(r+) < 0 at the sad-
dle point r+ = rs so that a stable NBTZ is more probable than
the MBTZ. Thus it is possible to flow from the MBTZ to the
NBTZ along the path provided by the off-shell black hole con-
figurations. At T = Tc , the situation is the same. This case is
depicted in Fig. 3. The off-shell black holes can be modeled by
the metric Eq. (1) with fixed T and varying 0 < r+ < rs , and
a conical singularity at the event horizon. This differs from the
Hawking–Page transition where the unstable black hole plays
an important role of the mediator from thermal AdS to AdS
black hole. Here is no such a mediator. Hence there is no the
Hawking–Page like transition in three dimensions. This states
the censorship for the Hawking–Page transition in three di-
mensions. Since, in the canonical approach, the free energy
corresponds to the effective potential, the transition between
the MBTZ with and NBTZ may be regarded as the tunneling
process.

On the AdS side, we check whether or not the Cardy–
Velinde formula is satisfied with this picture. To obtain this
formula of SNBTZ = 2πl

d−2

√
Ec(ENBTZ − Ec) [19], we have to

define the Casimir energy Ec = 2ENBTZ −TH SNBTZ. However,
it turns out

(12)Ec = 0.

Also considering the boundary topology of S1 leads to Ec = 0
because it is locally flat. Thus we no longer use this formula
to show a relation between entropy and energy in three dimen-
sions.
Fig. 3. The large dashed line denotes the CNBTZ = 3l/2G3 = c as the cen-
tral charge on the CFT boundary. The dotted line represents the off-shell
β-function βNBTZ(r+, Tc), which measures the mass of a conical singularity.
The solid line denotes the on-shell free energy F on

NBTZ(r+), while the small

dashed line shows the off-shell free energy F off
NBTZ(r+, Tc). At the junction

point of r+ = rs = 1, one has F on
NBTZ = F off

NBTZ, βNBTZ = 0. This point is a
stable NBTZ which comes out from the off-shell approach.

On the CFT side, we introduce the well-known Cardy for-
mula in two dimensions

(13)SCFT = 2π

√
c

6
L0 + 2π

√
c̄

6
L̄0

with c = c̄ = 3l/2G3 and L0 = L̄0 = MNBTZl/2. Here the ra-
dius of S1 is set to be ρ = 1. Then we establish the AdS/CFT
correspondence for the entropy: SCFT = SNBTZ [15]. Finally we
note that this model does not satisfies a higher-dimensional re-
lation of Ec ∝ c because of Ec = 0.

3. Transition between TADS and NBTZ

In three dimensions, one has a mass gap between MBTZ
with MMBTZ = 0 and TADS with MTADS = −1/8G3. A conical
singularity interpreted as a point mass source would be intro-
duced to explain this. For this purpose, we use the relation of
Ics = − r+δ

4G3
≡ 4πr+Mcs. Then the mass of a conical singularity

at the event horizon is given by [12]

(14)Mcs(r+, T ) = − 1

8G3

δ

2π
= − 1

8G3
(1 − α).

This is closely parallel to the point particle at the event horizon:
Ipp = r+δ

4G3
≡ 4πr+Mpp with Mpp = δ

16πG3
= −Mcs. Here we

obtain another relation Mcs = βNBTZ/4π between mass and β-
function. The branch of −1/8G3 � Mcs < 0 is allowed only to
a collection of off-shell black holes with a conical singularity
for 0 � r+ < rs . In this section we use the mass (energy) Mcs
instead of the mass of black hole itself.

Furthermore, we introduce a new energy and free energy
which are based on the Horowitz–Myers conjecture for the AdS
soliton [20]. This implies that the soliton with a negative en-
ergy can be taken as the thermal background. We note that for
a three-dimensional AdS space, the flat AdS black hole and
spherical AdS black hole are the same because their horizons
are one dimension. Thus, the three-dimensional AdS soliton is
just the thermal AdS space [21]. Then we can calculate the new
energy and free energy with respect to the soliton background
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Fig. 4. The solid line denotes the on-shell free energy F̃ on(r+), while the
dashed lines show the off-shell free energy F̃ off(r+, T ) for three different
temperatures: from the top down, T = 0.059(< Tc), Tc = 0.159,0.259(> Tc).
These are shifted from F on

NBTZ and F off
NBTZ by +1/8. The dotted line represents

the mass of a conical singularity Mcs(r+, Tc).

(TADS) using the standard regularization scheme:

Ẽ(r+) = 1

8G3

[
1 + r2+

l2

]
,

(15)F̃ on(r+) = F on
NBTZ − FTADS = 1

8G3

[
1 − r2+

l2

]
.

This leads to

(16)F̃ off(r+, T ) = F off
NBTZ(r+, T ) − FTADS.

The new energy of Ẽ = ENBTZ − ETADS is always positive
with respect to the TADS. We have F̃ on = F̃ off = 1/8G3 but
MTADS is found to be Mcs(0, Tc) = −1/8G3 at r+ = 0. On the
other hand, at the saddle point r+ = rs , we have F̃ on(r+) =
F̃ off(r+, Tc) = Mcs(r+, Tc) = 0. This is depicted in Fig. 4. At
T = Tc, the transition from the TADS to the NBTZ is possible.
For T < Tc , the TADS dominates, while for T > Tc, the NBTZ
dominates because of F̃ off(r+ = rs) < 0. There is a change of
dominance at the critical temperature T = Tc.

Therefore, if one considers the mass of a conical singularity,
we can connect the TADS with the NBTZ using the off-shell
free energy approach. In this way, we could accommodate the
TADS with a negative mass and free energy within our picture.

Alternatively, if one includes quantum fluctuations, there ex-
its a possibility that the MBTZ is not the end of the Hawking
evaporation and the end might be the TADS [22].

Consequently, the transition between the MBTZ and NBTZ
is possible to occur. This does not belong to the first-order
Hawking–Page transition because it is not a genuine process
of a black hole nucleation mediated by an unstable black hole.
Furthermore, if one introduces the mass of a conical singularity
and the Horowitz–Myers conjecture, a transition between the
TADS and NBTZ is also possible.
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