11 research outputs found

    Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes

    Get PDF
    Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy Consortium assembled genome-wide association studies of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (P < 5 x 10(-8)) with GDM, mapping to/near MTNR1B (P = 4.3 x 10(-54)), TCF7L2 (P = 4.0 x 10(-16)), CDKAL1 (P = 1.6 x 10(-4)), CDKN2A-CDKN2B (P = 4.1 x 10(-9)) and HKDC1 (P = 2.9 x 10(-8)). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomization analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.Peer reviewe

    Dysregulated non-coding telomerase RNA component and associated exonuclease XRN1 in leucocytes from women developing preeclampsia-possible link to enhanced senescence

    Get PDF
    Senescence in placenta/fetal membranes is a normal phenomenon linked to term parturition. However, excessive senescence which may be induced by telomere attrition, has been associated with preeclampsia (PE). We hypothesized that the telomerase complex in peripheral blood mononuclear cells (PBMC) and circulating telomere associated senescence markers would be dysregulated in women with PE. We measured long non-coding (nc) RNA telomerase RNA component (TERC) and RNAs involved in the maturation of TERC in PBMC, and the expression of TERC and 5′–3′ Exoribonuclease 1 (XRN1) in extracellular vesicles at 22–24 weeks, 36–38 weeks and, 5-year follow-up in controls and PE. We also measured telomere length at 22–24 weeks and 5-year follow-up. The circulating senescence markers cathelicidin antimicrobial peptide (CAMP), β-galactosidase, stathmin 1 (STMN1) and chitotriosidase/CHIT1 were measured at 14–16, 22–24, 36–38 weeks and at 5-year follow-up in the STORK study and before delivery and 6 months post-partum in the ACUTE PE study. We found decreased expression of TERC in PBMC early in pregnant women who subsequently developed PE. XRN1 involved in the maturation of TERC was also reduced in pregnancy and 5-year follow-up. Further, we found that the senescence markers CAMP and β-galactosidase were increased in PE pregnancies, and CAMP remained higher at 5-year follow-up. β-galactosidase was associated with atherogenic lipid ratios during pregnancy and at 5-year follow-up, in PE particularly. This study suggests a potential involvement of dysfunctional telomerase biology in the pathophysiology of PE, which is not restricted to the placenta

    Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes

    No full text
    Abstract Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy Consortium assembled genome-wide association studies of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (P &lt; 5 x 10-8) with GDM, mapping to/near MTNR1B (P = 4.3 x 10-54), TCF7L2 (P = 4.0 x 10-16), CDKAL1 (P = 1.6 x 10-14), CDKN2A-CDKN2B (P = 4.1 x 10-9) and HKDC1 (P = 2.9 x 10-8). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomization analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy
    corecore