376 research outputs found

    Laboratory evidence for volume-dominated nucleation of ice in supercooled water microdroplets

    No full text
    International audienceWe report on measurements of the rate of homogeneous ice nucleation in supercooled water microdroplets levitated in an electrodynamic balance. By comparison of the freezing probability for droplets of radius 49µm and 19µm, we are able to conclude that homogeneous freezing is a volume-proportional process and that surface nucleation might only be important, if at all, for much smaller droplets

    Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit

    Full text link
    We have explored the spatial distribution of an ion cloud trapped in a linear octopole radio-frequency (rf) ion trap. The two-dimensional distribution of the column density of stored silver dimer cations was measured via photofragment-ion yields as a function of the position of the incident laser beam over the transverse cross section of the trap. The profile of the ion distribution was found to be dependent on the number of loaded ions. Under high ion-loading conditions with a significant space-charge effect, ions form a ring profile with a maximum at the outer region of the trap, whereas they are localized near the center axis region at low loading of the ions. These results are explained quantitatively by a model calculation based on equilibrium between the space-charge-induced potential and the effective potential of the multipole rf field. The maximum adiabaticity parameter \eta_max is estimated to be about 0.13 for the high ion-density condition in the present octopole ion trap, which is lower than typical values reported for low ion densities; this is probably due to additional instability caused by the space charge.Comment: 8 pages, 5 figure

    Effect of chemically induced fracturing on the ice nucleation activity of alkali feldspar

    Get PDF
    Feldspar is an important constituent of airborne mineral dust. Some alkali feldspars exhibit particularly high ice nucleation (IN) activity. This has been related to structural similarities of the ice (101¯0) prism planes and the (100) planes of alkali feldspar. Here the effect of generating feldspar surfaces with close to (100) orientation by means of chemically induced fracturing on the IN activity of alkali feldspar was investigated experimentally. To this end, gem-quality K-rich alkali feldspar was shifted towards more Na-rich compositions by cation exchange with an NaCl–KCl salt melt at 850 ∘C. By this procedure, a system of parallel cracks with an orientation close to the (100) plane of the feldspar was induced. Droplet-freezing assay experiments performed on grain mounts of the cation-exchanged alkali feldspars revealed an increase in the overall density of ice-nucleating active site (INAS) density with respect to the untreated feldspar. In addition, annealing at 550 ∘C subsequent to primary cation exchange further enhanced the INAS density and led to IN activity at exceptionally high temperatures. Although very efficient in experiment, fracturing by cation exchange with an alkali halide salt is unlikely to be of relevance in the conditioning of alkali feldspars in nature. However, parting planes with similar orientation as the chemically induced cracks may be generated in lamellar microstructures resulting from the exsolution of initially homogeneous alkali feldspar, a widespread phenomenon in natural alkali feldspar known as perthite formation. Perthitic alkali feldspars indeed show the highest IN activity. We tentatively ascribe this phenomenon to the preferential exposure of feldspar crystal surfaces oriented sub-parallel to (100)

    Probing ice-nucleation processes on the molecular level using second harmonic generation spectroscopy

    Get PDF
    We present and characterize a novel setup to apply Second Harmonic Generation (SHG) spectroscopy in total internal reflection geometry (TIR) to heterogeneous freezing research. It allows to monitor the evolution of water structuring at solid surfaces at low temperatures prior to heterogeneous ice nucleation. Apart from the possibility of investigating temperature dependence, a major novelty in our setup is the ability of measuring sheet-like samples in TIR geometry in a direct way. As a main experimental result, we find that our method can discriminate between good and poor ice nucleating surfaces. While at the sapphire basal plane, which is known to be a poor ice nucleator, no structural rearrangement of the water molecules is found prior to freezing, the basal plane surface of mica, an analogue to ice active mineral dust surfaces, exhibits a strong change in the nonlinear optical properties at temperatures well above the freezing transition. This is interpreted as a pre-activation, i.e. an increase in the local ordering of the interfacial water which is expected to facilitate the crystallization of ice at the surface. The results are in line with recent predictions by Molecular Dynamics simulations on a similar system

    Unravelling the microphysics of polar mesospheric cloud formation

    Get PDF
    Polar mesospheric clouds are the highest water ice clouds occurring in the terrestrial atmosphere. They form in the polar summer mesopause, the coldest region in the atmosphere. It has long been assumed that these clouds form by heterogeneous nucleation on meteoric smoke particles which are the remnants of material ablated from meteoroids in the upper atmosphere. However, until now little was known about the properties of these nanometre-sized particles and application of the classical theory for heterogeneous ice nucleation was impacted by large uncertainties. In this work, we performed laboratory measurements on the heterogeneous ice formation process at mesopause conditions on small (r=1 to 3&thinsp;nm) iron silicate nanoparticles serving as meteoric smoke analogues. We observe that ice growth on these particles sets in for saturation ratios with respect to hexagonal ice below Sh=50, a value that is commonly exceeded during the polar mesospheric cloud season, affirming meteoric smoke particles as likely nuclei for heterogeneous ice formation in mesospheric clouds. We present a simple ice-activation model based on the Kelvin–Thomson equation that takes into account the water coverage of iron silicates of various compositions. The activation model reproduces the experimental data very well using bulk properties of compact amorphous solid water. This is in line with the finding from our previous study that ice formation on iron silicate nanoparticles occurs by condensation of amorphous solid water rather than by nucleation of crystalline ice at mesopause conditions. Using the activation model, we also show that for iron silicate particles with dry radius larger than r=0.6&thinsp;nm the nanoparticle charge has no significant effect on the ice-activation threshold.</p

    Using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS

    No full text
    International audienceCavity enhanced methods in absorption spectroscopy have seen a considerable increase in popularity during the past decade. Especially Cavity Enhanced Absorption Spectroscopy (CEAS) established itself in atmospheric trace gas detection by providing tens of kilometers of effective light path length using a cavity as short as 1 m. In this paper we report on the construction and testing of a compact and power efficient light emitting diode based broadband Cavity Enhanced Differential Optical Absorption Spectrometer (CE-DOAS) for in situ field observation of atmospheric NO3. This device combines the small size of the cavity with the enormous advantages of the DOAS approach in terms of sensitivity and specificity. In particular, no selective removal of the analyte (here NO3) is necessary, thus the CE-DOAS technique can ? in principle ? measure any gas detectable by DOAS. We will discuss the advantages of using a light emitting diode (LED) as light source particularly the precautions which have to be satisfied for the use of LEDs. The instrument was tested in the lab by detecting NO3 in a mixture of NO2 and O3 in air. It was then compared to other trace gas detection techniques in an intercomparison campaign in the atmosphere simulation chamber SAPHIR at NO3 concentrations as low as 6.3 ppt

    Bioactive ether lipids: primordial modulators of cellular signaling

    Get PDF
    The primacy of lipids as essential components of cellular membranes is conserved across taxonomic domains. In addition to this crucial role as a semi-permeable barrier, lipids are also increasingly recognized as important signaling molecules with diverse functional mechanisms ranging from cell surface receptor binding to the intracellular regulation of enzymatic cascades. In this review, we focus on ether lipids, an ancient family of lipids having ether-linked structures that chemically differ from their more prevalent acyl relatives. In particular, we examine ether lipid biosynthesis in the peroxisome of mammalian cells, the roles of selected glycerolipids and glycerophospholipids in signal transduction in both prokaryotes and eukaryotes, and finally, the potential therapeutic contributions of synthetic ether lipids to the treatment of cancer

    Charge induced stability of water droplets in subsaturated environment

    Get PDF
    Atmospheric liquid and solid water particles are stabilized if they are coated with either negative or positive electric charge. The surface charge causes an increase of the partial pressure of water vapour close to the surface of each particle, effectively allowing the particles to remain in their condensed phase even if the environmental relative humidity drops below unity. The theory, briefly presented in this paper, predicts a zero parameter relation between surface charge density and water vapour pressure. This relation was tested in a series of Electrodynamic Balance experiments. The measurements were performed by stabilizing charged droplets of pure water near an ice-surface. We observed a divergence in radius as the temperature approached the freezing point from below. We find that the measurements confirm the theory within the experimental uncertainty. In some cases this generally overlooked effect may have impact on cloud processes and on results produced by Electrodynamic Balance experiments
    • …
    corecore